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Abstract Electron Microscopy is a valuable tool for the elucidation of the three-dimensional

structure of macromolecular complexes. Knowledge about the macromolecular structure pro-

vides important information about its function and how it is carried out. This work addresses

the issue of three-dimensional reconstruction of biological macromolecules from electron

microscopy images. In particular, it focuses on a methodology known as “single-particles”

and makes a thorough review of all those steps that can be expressed as an optimization

problem. In spite of important advances in recent years, there are still unresolved challenges

in the field that offer an excellent testbed for new and more powerful optimization techniques.
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Introduction

The structure determination of large macromolecular complexes is having a tremendous im-

pact in understanding the molecular machinery. This knowledge is crucial, for example, for
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designing target-specific drugs and characterizing pathological vs. non-pathological situa-

tions (Sali et al., 2003; Thornton, Todd, and Milburn, 2000).

Three-dimensional electron microscopy (3DEM) allows imaging of large biological

macromolecules nearly in their native state. 3DEM of single particles is able to produce

3D structures with resolutions between 6 and 30 Å(1 Å = 10−10m). This range of resolu-

tion allows discerning biologically relevant information regarding molecular shape, domain

architecture, and, on the high-resolution end, secondary structure (Frank, 2002). Substantial

efforts have been invested in developing a technology that allows high resolution macro-

molecular imaging although it should be realized from the onset that micrographs are, in

many cases, altered images of the native structure of the macromolecule, which are very

noisy due to the random nature of the electron beam. Furthermore, the electron microscope

introduces aberrations in the imaging process. And, finally, it must be taken into account that

micrographs represent 2D projections of 3D dimensional objects, i.e., all depth information

is lost during the image acquisition.

Different techniques have been developed within the last forty years to solve part of these

problems. Not surprisingly, the success of EM particle analysis has been highly correlated

with methodological advances and the continuous development of various EM image pro-

cessing packages.

From an image processing point of view there are four main problems involved in 3D

reconstruction using electron microscopy data:� Biological material is very sensitive to radiation. So, in order to keep high resolution

information, very low electron doses should be used to obtain the images. This results in

extremely noisy images.� The original 3-D structure can be reconstructed (up to a certain resolution), combining

images of the molecule in various orientations. In order to combine these images we need

to know their relative orientations. A task that is far from trivial.� The aberrations introduced by the electron microscope are not negligible and need to be

corrected so that the micrographs faithfully represent X-ray projections of the specimen

under study.� Due to the low quality of the images, it is very difficult to separate in a micrograph images

coming from different kind of molecules. Even if the sample is biochemically pure (i.e.,

there is a single type of protein), biological molecules are flexible objects and the same

protein may exhibit several conformations.

Although many methodologies have been proposed to achieve a complete 3D reconstruc-

tion, the problems involved in the process are very complex and, thus, only remain partially

solved. In this review we aim at describing the 3D reconstruction workflow of single particles

from A to Z making emphasis on those most critical steps in the workflow. We will concen-

trate on the formulation of the optimization problems involved. The spectrum of optimization

techniques used in the field is very wide and ranges from discrete optimizers to continuous

ones, from deterministic to stochastic, with or without constraints, with one or multiple ob-

jective functions, etc. Our intention is also to introduce the state-of-the-art of the optimization

techniques employed in the field encouraging researchers to propose new methods that allow

to improve the resolution of the 3D reconstructed particles. This will provide key structural

information about the way in which macromolecular machines perform their functions in live

cells.

The rest of the paper is organized as follows: Section 1 describes the electron microscope,

the biological material that is imaged, and the image formation model. The image processing

workflow commonly employed in the study of single particles is described at the end of this
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section. Each of the steps of the workflow is described in detail in Section 2. For each step,

we provide a general overview and formulate the optimization problem related to the topic.

Then, we review the solutions currently devised. We conclude in Section 3 by indicating

those problems in the field that in our opinion remain still open.

1. Electron microscopy principles

1.1. Electron microscope

The electron microscope is a device that uses highly accelerated electrons, focused with

electromagnetic “lenses”, to obtain images of the specimen under study (Frank, 1996, 2006;

Lenz, 1971). The disposition of the electron microscope is similar to that of the optical

microscope (see Fig. 1), but upside down. The source of illumination is a filament (cathode)

that emits the electrons. Since electrons are scattered by air molecules, the air must be removed

by creating a high vacuum. The electrons are accelerated from the cathode to a nearby anode

(electric potentials in the order of 200 kV or higher are typically used). Magnetic coils act as

lenses and focus the electron beam crossing the specimen. The outcoming electron beam is

recorded by a photographic plate or a CCD array. Most of the electrons never interacts with

the specimen and only contributes to form a background noise. A few electrons will interact

elastically (without changing their energy) with the specimen and, finally, a negligible amount

will interact strongly (inelastic scattering).

Under the weak-phase object approximation (i.e., inelastic scattering can be neglected

compared to elastic scattering) the image acquired (projection image) can be modeled math-

ematically as the X-ray transform of the Coulomb potential of the specimen. The Coulomb

potential is a three-dimensional function f (r) where r ∈ R3, while its X-ray transform is a

two-dimensional function. That is, the micrographs are projections obtained by projecting a

rotated and translated version of the sample function f onto the XY plane. The translation is

described by a 2D vector s0. The rotation is usually given by three Euler angles φ, θ, ψ . The

projection at a given point s ∈ R2 is defined as the line integral of the rotated and translated

Fig. 1 Schematic representation
of an electron microscope
(San Martı́n, 1996)
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volume that passes through s:

pφ,θ,ψ,s0
(s) =

∫
R

f
(
E−1

φ,θ,ψ (H t (s − s0) + le3)
)
dl, (1)

where H is the projection onto the XY plane operator, H = (
1 0 0
0 1 0 ), Eφ,θ,ψ =

Rz(φ)Ry(θ )Rz(ψ) is the Euler rotation matrix around Z, Y and new Z, and et
3 = (0, 0, 1).

As any other imaging device, the electron microscope introduces some distortion in the

acquired images. This distortion is usually modeled in a first order approximation by the

convolution with a Point Spread Function (PSF). Its dual function in Fourier space is called

the Contrast Transfer Function (CTF) and, in the particular case of EM, it is real-valued.

The CTF looks like a damped two-dimensional sine wave (Frank, 1996; Unwin, 1973). The

effect of the CTF is twofold: it introduces zones of alternate contrast (some components are

projected as white on a black background, while others are projected as black on a white

background) and it introduces low pass and band pass filtration.

1.2. The sample biological material

Before taking into account the reconstruction problem itself, we should discuss the kind of

object to be reconstructed and its behavior during the recording process. Biological macro-

molecules are small. Their size ranges from 100 to 10,000 Å. This small size implies that a

direct manipulation is extremely difficult, if at all possible, and can only be performed under

rather restrained conditions, which represents an obstacle for their characterization.

The conditions inside the electron microscope, high vacuum and high electron radiation

level, are very deleterious for the specimens, which should therefore be protected somehow

(for example by embedding the sample in ice). This protection has as a side effect in that

it decreases the signal-to-noise ratio (SNR, Jain (1989)). In addition, the problem of beam-

induced damage is by no means negligible. Electron radiation induces intense ionization of

the sample with the formation of free radicals and ions that produce important alterations of

the structure. In order to minimize this damage, very low electron doses are used, which in

turn produce images with extremely low SNR. Typically observed SNRs can be as low as

1/10.

The solution devised for improving the poor SNR in the micrographs has been to “average”

over many (thousands) of identical copies of the specimen. This “averaging” process is

mathematically known as the tomography problem (Herman, 1980; Kak and Slaney, 1987;

Natterer and Wübbeling, 2001) in which 2D projections are combined in a 3D volume. This

can be done directly in the case of 2D crystals, where particles are a priori ordered (a crystal

is a structure made by an object that repeats itself following a regular pattern), or in the case of

single particles (i.e., identical copies of a molecule that are recorded in random orientations

inside the electron microscope) only after translational and rotational alignment.

1.3. Image formation model

As already introduced, the SNR in EM image processing is very low. Noise is generated by

many sources. Among others the low, and possibly varying, electron dose, the random nature

of the electron emission, the interaction of the electrons with the sample holder, the granular

composition of the film where the image is recorded, the electronic noise of the scanner used

to digitize the image, etc. (If a CCD camera is used instead of the film, then the electronic

noise due to the CCD diodes must also be taken into account.) The resulting noise has
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Fig. 2 From left to right: top view of the isosurface of the bacteriorhodopsin, ideal projection (at 1/7 Å−1

resolution) obtained from the top, projection obtained after applying the CTF, projection obtained after applying
the CTF and adding noise

been shown to be additive and normally distributed (Frank and Al-Ali, 1975; Sorzano et al.,

2004a). This helps simplifying the mathematical formulation of many of the optimization

problems involved from the image acquisition step towards the 3D reconstruction of the

macromolecule. For a complete description of the image formation model, the noise before

and after the CTF needs to be considered (nb(s) and na(s), respectively) (Velázquez-Muriel

et al., 2003).

Adding the noise dependent term to (1) and taking into account the effect of the PSF, the

complete image formation model can be formulated as

pφ,θ,ψ,s0
(s) = PSF(s) �

( ∫
R

f
(
E−1

φ,θ,ψ (H t (s − s0) + le3)
)
dl + nb(s)

)
+ na(s),

(2)

where � represents the convolution operator. The effect of the noise and the CTF can be

seen for the top view of the bacteriorhodopsin (a protein whose structure is known at atomic

resolution) in Fig. 2. However, as will be seen in the following, many image processing

algorithms assume a simpler image formation model where the CTF is not taken into account:

pφ,θ,ψ,s0
(s) =

∫
R

f
(
E−1

φ,θ,ψ (H t (s − s0) + le3)
)
dl + n(s). (3)

In this paper, the noisy projections will be referred to as y, the ideal projections as x , and

this simple image formation model as additive-noise: y = x + n.

1.4. 3D Reconsruction work-flow

Different approaches have been devised to reconstruct 3D structures from their EM projec-

tions. These approaches can be classified depending on the kind of data they work with,

more specifically on the kind of symmetry that the imaged particle exhibits. In the case of

helical filaments, a single view carries enough information to reconstruct the specimen up

to certain resolution (De Rosier and Klug, 1968). Other types of symmetry that are typi-

cally encountered for biological macromolecules are: 2D-crystals (Ellis and Hebert, 2001)

and icosahedral viruses Baker, Olson, and Fuller (1999). For the general case, however, we

cannot count on symmetry. In the rest of this paper we will focus on the latter case, which is

termed single particle reconstruction.
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The process followed to obtain a 3D-reconstruction for single particles can be briefly

described as follows (only those steps related to the digital image processing will be enu-

merated):

1. Images containing many identical copies of the specimen are recorded in the electron

microscope and converted to digital form.

2. Micrographs may be preprocessed: (i) aberrations introduced by the microscope (CTF)

are estimated and corrected, (ii) images are denoised.

3. Particle projections are identified and extracted from the micrographs.

4. Projections are normalized, aligned and classified (the particles are classified to distinguish

possible structural variability, different projection directions or contaminating particles).

This is an iterative process, the better the particles are aligned the better they may be

classified, and vice-versa.

5. Finally, when a structurally homogeneous and aligned set of particles has been obtained,

it can be combined to obtain a volume.

The whole procedure is iterative, since a first rough reconstruction helps to better identify,

classify and align the 2D projections. The newly aligned projections are then used to build

a finer reconstruction which in turn is again used to align the 2D projections. This process

is iterated until convergence (usually defined as no significant change of the projection

alignment, or no significant improvement of the resolution achieved.)

2. Optimization problems

In this section we discuss each one of the image processing problems that are involved in

the 3D reconstruction of single particles in EM from an optimization point of view. For each

topic we formulate the optimization problem associated and review its current solutions. The

section is divided in nine problems (image denoising, 2D alignment, image classification,

angular assignment, 3D reconstruction, 3D reconstruction performance, CTF estimation,

CTF amplitude correction, and the reconstruction process). These topics have been sorted by

their appearance order in the image processing work-flow.

Problem 1: Image denoising

Due to the extremely low SNR, one of the earliest steps that may be performed on the acquired

images is image denoising. Denoised images serve various purposes, like image alignment,

automatic particle picking, etc. At this early stage, a simple additive-noise image-formation

model is considered: y = x + n, where n is assumed to be normally distributed random noise.

In EM, this is a very reasonable approximation.

One of the most popular image denoising techniques employs the Fourier transform

(Bracewell, 1986). Experimental images are usually filtered using either a low-pass or a

band-pass filter since it is assumed that the power of noise is much higher than the power of

signal at high frequencies (Jain, 1989). The solution adopted by Fourier filtering is the re-

moval of all high frequency components. Although, in general, the overall SNR is increased,

it can be easily seen that the high frequency components are always discarded disregarding

whether they belong to the signal or not.

An alternative approach (Sorzano et al., 2006) that is formulated as an optimization

problem takes advantage of the additive-noise image-formation model and the linearity of the

Discrete Wavelet Transform (Mallat, 1999). Since the noise follows a Gaussian distribution
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with zero mean and variance N , p(n) = G(n, 0, N ), and the signal and noise are assumed to

be independent, then p(y | x) = p(n) = G(y − x, 0, N ). The concept of scale in the wavelet

transform is related to the concept of frequency in the Fourier transform. Finer scales are

related to higher frequencies. For the kind of projection images EM deals with, white noise

is a quite limiting assumption. On the contrary, it is reasonable to think that the noise power

decreases as the scale becomes finer. In this case, it is better to use a different noise variance

at each scale s, Ns . A reasonable model for the wavelet coefficients at a given scale s states

that their distribution is also Gaussian with zero mean and variance Ss (Bijaoui, 2002),

p(xs) = G(xs, 0, Ss). With these hypothesis, it can be easily shown (Bijaoui, 2002) that the

a posteriori expected value of x is given by

E {xs |ys} = ys
Ss

Ss + Ns
. (4)

This expression weighs the wavelet components according to the probability of coming

from the signal distribution or not. Then, the problem now is how to estimate the respective

variances of signal and noise at each scale (Ss and Ns).

If an orthogonal wavelet decomposition is used, then the signal and noise power are

decomposed at each scale so that the total image power is the same as the power of its

wavelet transform ∑
y2 =

∑
s

y2
s =

∑
s

Ps, (5)

where

Ps = ns(Ss + Ns), (6)

and ns is the number of wavelet coefficients at scale s. This estimation problem must be

restricted by some a priori knowledge about the problem at hand. First of all, the solutions

for Ns and Ss must be positive since they represent the variance of some random variable.

As has been already mentioned, the signal and noise usually power decrease with the scale

Ns ≤ Ns+1, Ss ≤ Ss+1. Furthermore, upper and lower bounds of the SNR can be provided

SNRl ≤
∑

s ns Ss∑
s ns Ns

≤ SNRh . (7)

It is also known that for the kind of signals present in EM, most of the energy is concentrated

at low frequencies, therefore the SNR must increase as coarser scales are considered

∑s
i=0 ni Si∑s
i=0 ni Ni

≤
∑s+1

i=0 ni Si∑s+1
i=0 ni Ni

. (8)

Due to the high number of constraints and the noisy nature of the measurements, it

is very unlikely that the equation system in (6) can be solved exactly. Alternatively, a

least-squares solution of the equation system is sought subject to a number of linear and

nonlinear constraints. The cost function to minimize is ‖Cx − P‖2 subject to Ax ≤ b,
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∑s
i=0

∑s+1
j=0 ni n j (Si N j − Sj Ni ) ≤ 0, and Aeqx = beq where

C =

⎛⎜⎜⎜⎜⎜⎜⎝

n1 0 0 0 . . . n1 0 0 0 . . .

0 n2 0 0 . . . 0 n2 0 0 . . .

0 0 n3 0 . . . 0 0 n3 0 . . .

0 0 0 n4 . . . 0 0 0 n4 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠ , x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N1

N2

N3

N4

...

S1

S2

S3

S4

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

P1

P2

P3

P4

...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 . . . 0 0 0 0 . . .

0 1 −1 0 . . . 0 0 0 0 . . .

0 0 1 −1 . . . 0 0 0 0 . . .

. . . . . . . . . . . . . . . 0 0 0 0 . . .

0 0 0 0 . . . 1 −1 0 0 . . .

0 0 0 0 . . . 0 1 −1 0 . . .

0 0 0 0 . . . 0 0 1 −1 . . .

0 0 0 0 . . . . . . . . . . . . . . . . . .

−1 0 0 0 . . . 0 0 0 0 . . .

0 −1 0 0 . . . 0 0 0 0 . . .

0 0 −1 0 . . . 0 0 0 0 . . .

0 0 0 −1 . . . 0 0 0 0 . . .

. . . . . . . . . . . . . . . 0 0 0 0 . . .

0 0 0 0 . . . −1 0 0 0 . . .

0 0 0 0 . . . 0 −1 0 0 . . .

0 0 0 0 . . . 0 0 −1 0 . . .

0 0 0 0 . . . 0 0 0 −1 . . .

0 0 0 0 . . . . . . . . . . . . . . . . . .

−SNRhn1 −SNRhn2 −SNRhn3 −SNRhn4 . . . n1 n2 n3 n4 . . .

SNRl n1 SNRl n2 SNRl n3 SNRl n4 . . . −n1 −n2 −n3 −n4 . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

...

0

0

0

...

0

0

0

0

...

0

0

0

0

...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Aeq = (n1 n2 . . . n1 n2 . . .), and beq = (
∑

s Ps ).
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This problem is of the form

x∗ = arg min
x

C(x) = arg min
x

‖Cx − P‖2

s.t. Geq(x) = Aeqx − beq = 0

Gineq(x) = Ax − b ≤ 0

(9)

where C(x) is a strictly convex function, Geq(x) is linear and Gineq(x) is a convex function

if (8) is not considered. Under these circumstances, there exists a unique global solution to

the problem. If (8) is taken into account, then the constraints are not convex any more, and

local minima may exist.

A Successive Quadratic Programming (SQP) approach is followed to solve the estima-

tion problem. This approach aims at solving local Quadratic Programming (QP) problems

by finding solutions of the first order Karush-Kuhn-Tucker (KKT) conditions (Dennis and

Schnabel, 1996). The gradient of each of the functions involved is approximated by a finite

order approximation if (8) is considered and is analytically computed if it is not. The SQP

method takes Newton-like steps and, therefore, it has a fast rate of convergence.

Problem 2: 2D alignment

There are many complexes that show one or more preferrential view directions (Boisset

et al., 1998; San Martin et al., 1995; Valle et al., 2000). The analysis of the projections

along these directions may reveal biologically relevant features. Image averaging of the

individual experimental images is usually performed as a way to increase the SNR. If the

image formation model is additive-noise, y = x + n, and the variance of the noise is σ 2,

then averaging over N images reduces the power of the noise present in the average to σ 2

N .

However, image averaging can only be performed if the corresponding experimental images

have been previously aligned translationally and rotationally.

Given the ideal image x and the experimentally measured image y, the probability of

measuring y after applying some shift s0 ∈ R2 and some rotation ψ ∈ R to the image x is

given by the multivariate Gaussian distribution (Sigworth, 1998)

p(y | x, s0, ψ) = 1

(2πσ )
N
2

exp

(
− 1

2σ N
‖y − x(s0, ψ)‖2

)
(10)

It can be shown that the transformation parameters (s0, ψ) that maximize the likelihood of

observing the experimental image are those that minimize ‖y − x(s0, ψ)‖2, which in turn

are those maximizing the inner product 〈y, x(s0, ψ)〉. This inner product is computed as the

sum of the product of the pixel values of both images

〈y, x(s0, ψ)〉 =
∑

i

yi xi (s0, ψ), (11)

where yi denotes the i-th pixel of image y. This functional is usually referred to as the

correlation between y and x(s0, ψ). Thus, aligning two images can be formulated as the

following optimization problem:

s∗
0, ψ

∗ = arg max
s0,ψ

〈y, x(s0, ψ)〉
s.t. (s0, ψ) ∈ S

(12)
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where S introduce our a priori knowledge about the limits of these parameters. Note that

this criterion is sensitive to scaling differences in the image gray levels, which may be often

the case. To avoid this dependency, the correlation index between the two images can be

optimized instead. The correlation index normalizes the correlation of the two images by

their respective variances ( 〈x,y〉
‖x‖‖y‖ ).

The common approach in EM to optimize this functional is by an exhaustive search of all

possible combinations of s0 and ψ within a discrete grid (Frank, 1996). The search in the

s0 space can be greatly accelerated due to the shift property of the correlation function in

Fourier space (Bracewell, 1986).

Maximizing the correlation not always produces the true transformation parameters since

the noise creates local minima that would not be present if the measurements were noise-free.

In addition, one way to diminish the search time is by proceeding from coarse to fine grids

in the search space of s0 and ψ . However, this may increase the chances of getting trapped

in a local minimum.

So far, we assumed that the ideal model x is known. However, this is not true, since the

whole point of the problem is to produce an average of the ensemble of experimental images

(x̄∗) that allows better identification of the structural features visible from that point of view.

It is common use to apply an Expectation-Maximization approach (Dempster, Laird, and

Rubin, 1977) to solve this problem. In this approach, a current estimate of the ideal image

x̄ (t) is refined iteratively, until convergence to x̄∗.

The Expectation-Maximization approach tries to find the estimate of x̄ that maximizes

the joint probability p(x̄, Y ) where Y is the set of the N experimental images observed. Due

to the presence of the hidden variables s0 and ψ , this joint probability has to be maximized

taking into account all the possibilities for these two variables

x̄∗ = arg max
x̄

log p(x̄, Y ) = arg max
x̄

∑
s0,ψ

log p(x̄, Y, s0, ψ). (13)

The Expectation-Maximization procedure builds a lower bound to p(x̄, Y ) based on the

current estimate x̄ (t) during the E-step. This bound will be referred to as B(x̄ ; x̄ (t)). Then,

during the M-step the bound is optimized finding a new estimate x̄ (t+1). It can be shown that

the best lower bound is given by

B
(
x̄ ; x̄ (t)

) =
∑
s0,ψ

p
(
s0, ψ | x̄ (t), Y

)
log

p(x̄, Y, s0, ψ)

p(s0, ψ | x̄ (t), Y )
, (14)

and its optimizer is given by

x̄ (t+1) = arg max
x̄

B
(
x̄ ; x̄ (t)

) = arg max
x̄

log p(x̄)

+
∑
s0,ψ

p
(
s0, ψ |x̄ (t), Y

)
log p(Y, s0, ψ | x̄), (15)

It can be seen that in this method it is important to compute the probability distribution of

the hidden variables in terms of the observed measurements and the current estimate of the

ideal image. This probability can be computed as

p(s0, ψ | x̄ (t), Y ) = p(Y | x̄ (t), s0, ψ)p(s0)p(ψ)

p(Y )
. (16)
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Since no information is available about the a priori distribution of the transformation pa-

rameters, its distribution is taken as uniform over a range of plausible values. The same is

true about p(Y ). In this way, p(s0, ψ | x̄ (t), Y ) is proportional to p(Y | x̄ (t), s0, ψ) given in

(10). Furthermore, the marginal distribution of s0, ψ given x̄ (t) and Y is usually taken in EM

as a delta function p(s0, ψ | x̄ (t), Y ) = δ(s0 − s∗
0)δ (ψ − ψ∗), where s∗

0, ψ
∗ are given in (12).

Under this assumption and if no prior distribution is provided for x , the optimizer in (15)

can be proved to be the average of the experimental images after application of the shift and

rotations in (12).

This result justifies the common practice in EM where an initial guess of the ideal image

is chosen arbitrary by the user. Then, one finds the best translation and rotation parameters

according to this initial guess. These transformation parameters are applied to the experi-

mental images, and the average of the resulting images is taken as the next estimate of the

ideal image. This procedure is iterated until convergence. As was already pointed out, the

computations in (12) may be prone to errors due to the elevated levels of noise in the mea-

surements. If the SNR of the experimental images is very low, then this process may not

converge to the right solution in practical cases.

Alternatively, the maximum of (13) can be achieved by the following iterative step (Sig-

worth, 1998)

x̄ (t+1) = 1

N

N∑
i=1

∑
s0,ψ

yi (s0, ψ)p(yi | x̄ (t), s0, ψ)p(s0)p(ψ)∑
s0,ψ

p(yi | x̄ (t), s0, ψ)p(s0)p(ψ)
(17)

where now yi represents the i-th image in the ensemble. This process can be shown to

converge to a local minimum of the likelihood of observing the set of experimental images

given the model. In the work of Sigworth (1998) the distribution of s0 is assumed to be

a multivariate (2D) Gaussian whose parameters are also estimated during the optimization

process, as well as the power of the noise in the experimental images σ 2. Simulated as well

as experimental data shows that this procedure is capable of yielding better averages than

the pseudo Expectation-Maximization approach traditionally followed in single-particles

(Sigworth, 1998; Scheres et al., 2005). This alignment procedure can be further extended to

the multireference case (Scheres et al., 2005) in which it is assumed that there is not a single

average but several ones corresponding to different proteins or protein conformations.

Problem 3: Image classification

3D Reconstruction algorithms usually assume that the input data is homogenous, that is, a set

of projections of the very same object. Unfortunately, this is not true since, even for biochem-

ically pure samples, many proteins present a certain degree of flexibility. Therefore, before

applying the reconstruction algorithm, the input data need to be classified into homogenous

subsets.

The general approach to image classification first extracts a number of features from each

image. These features are arranged in a vector and, then, the classification is performed on this

set of vectors. Pixel gray values are usually used as features, but other values might be as well

like spectral features (color or tone, gradient, spectral parameter, etc.), geometric features

(edge, shape, size, etc.), or textural features (pattern, spatial frequency, homogeneity, etc.).

The main particularity of EM data is that images are extremely noisy, and the feature vectors

have a high variability even if they belong to the same class. In this context, classification

methods are pushed to their limits and very robust algorithms are required.
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Different methods for single particle image classification have been proposed. The most

popular approach used in this field are based on a combination of Multivariate Statistical

Analysis (MSA) (Frank and van Heel, 1982; van Heel and Frank, 1981) and Hierarchical

ascendant classification (HAC) (van Heel, 1984). MSA is used here in order to reduce the

number of variables characterizing an image while HAC is then performed for unsupervised

image classification (clustering) in this low-dimensional space. Hybrid (C-means and HAC)

classification approach (Frank, Chiu, and Degn, 1988b), Fuzzy C-means (Carazo et al., 1990),

Self-Organizing Maps (Marabini and Carazo, 1994) and some of its variants (Pascual-Marqui

et al., 2001; Pascual-Montano et al., 2001) are also good techniques widely used in the EM

field. In this review we will focus our attention on the most popular methods in the field.

Hierarchical ascendant classification

One of the most spread classification algorithms in 3DEM is HAC (van Heel, 1984; Frank

et al., 1988a). This classification algorithm partitions the data in a set of nested spaces

represented in a binary tree (also called dendogram). Sectioning the tree at a given level, splits

the data in g disjoint groups. The sectioning level (or threshold) represents the maximum

within-group distance that is allowed. In other words, two groups are different at a given

threshold if their distance is greater than the threshold.

There are two ways of computing the dendogram: divisive or agglomerative. In the first

approach, the whole dataset is successively split in two halves until there are as many groups

as images (each group formed by a single image). The algorithms available for this approach

are quite inefficient. The second approach starts with as many groups as images. The two

closest groups are joined forming a single group, thus, reducing the number of groups. This

process is iterated until only one group is left. This procedure is said to be ascendant and is

the common choice in 3DEM.

The key to build the hierarchical tree is how to measure the distance between two groups.

This is done in 3DEM by adopting a merging criterion due to Ward (1963) that minimizes

the inner dissimilarity of each cluster.

Given a set of feature vectors Y = {yi ∈ Rν} (ν is the number of features available,

i = 1, . . . , N being N the number of images), the problem is to find the partition 
∗ of Y
minimizing


∗ = arg min



∑
C∈


∑
yi ∈C

∥∥yi − C̄
∥∥2

(18)

where C is each of the elements (classes) of the partition 
, and C̄ is the centroid (arithmetic

mean) of the yi vectors assigned to the class C.

In Electron Microscopy, images are usually projected onto a small number of Principal

Components (Frank and van Heel, 1982; van Heel and Frank, 1981; van Heel, 1984). In this

way, each image is represented by a feature vector formed by its projection onto the selected

number of eigenvectors (between 5 and 15 eigenvectors are used). Euclidean distance is

employed in Electron Microscopy to measure the intra-cluster dissimilarity. However, other

measures can be used giving raise to the generalized Ward clustering problem (Batagelj,

1988).

In general, there are no efficient and exact algorithms to solve the clustering problem

(Batagelj, 1988). Instead, suboptimal algorithms are employed. The algorithm in Electron

Microscopy corresponds to a greedy heuristic that leads to an almost optimal partition of
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the data space. The key steps of the agglomerative algorithm is the update of the matrix

of distances between groups after the joining two clusters and the computation of the joint

centroid. Joining group i with group j results in a new group i + j whose centroid is given

by Frank et al. (1988a)

C̄i+ j = ni C̄i + n j C̄ j

ni + n j
, (19)

where ni is the number of elements in the class i and C̄i is their centroid. The new distance

matrix can be efficiently updated by Webb (2002, Chap. 10).

di+ j,k = (nk + ni )di,k + (nk + n j )d j,k − nkdi, j

nk + ni + n j
, (20)

where di+ j,k is the distance between the new group i + j and any other group k. Actually,

this update formula is a particular case of the Lance-Williams-Jambu formula for updating

dissimilarities between clusters (Batagelj, 1988).

The agglomerative procedure can be represented in a hierarchical tree (also called den-

dogram) whose root is the single cluster with all data. The tree is carefully drawn so that

the point at which two branches are joined represents the distance between the two joining

groups. This dendogram is used to divide the data into classes by setting a threshold on the

maximum distance allowed between groups. This threshold implies a cut in the dendogram

that gives C different classes.

The user is often asked to cut the dendogram by selecting the appropriate threshold based

on her expertise and previous knowledge. However, there are a number of heuristics helping

her decision. In Electron Microscopy the so-called “aggregation index” is used (Frank et al.,

1988a). The aggregation index is defined as

�Ii, j = ni n j

ni + n j
‖C̄i − C̄ j‖2. (21)

Nodes are ranked by aggregation index as a measure of the significance of the partitioning

at that level. The cutting of the tree is done on the lowest level associated with a significant

aggregation index (Zupan, 1982).

Self-organizing maps

We start our discussion with the well-known C-means algorithm (Bishop, 1995). Given a set

of feature vectors Y = {yi ∈ Rν} (ν is the number of features available, i = 1, . . . , N being

N the number of images), we try to find some vectors V = {
v j ∈ Rν

}
( j = 1, . . . , C) that

better discriminate between data classes. Implicitly, we have assumed that there exist exactly

C classes in the data. The v j are referred to as class representatives, class centroids, or code

vectors. The input data is assigned to the class whose code vector minimizes the Euclidean

distance to the given input vector. Thus, finding the code vectors is reduced to the following

minimization problem

V∗ = arg min
V

N∑
i=1

C∑
j=1

u ji‖yi − v j‖2, (22)
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where u ji = 1 if the j-th code vector is the closest code vector to the i-th data vector, or zero

otherwise. In fact, this problem can be seen as a discrete optimization problem where the class

assignments (u ji ) have to be found and the centroids of each class are calculated a posteriori.
The most common implementation of the algorithm converges to a “local” minimum (indeed

it cannot be truly called local due to the discrete nature of the problem). The algorithm

consists of a simple re-estimation procedure as follows. First, the data points are assigned at

random to the C sets (classes). Then, the centroid is computed for each set, and finally the

data points are reassigned to each class according to the minimum distance to its centroid.

These latest two steps are alternated until a stopping criterion is met, for instance, when there

is no further change in the assignment of the data points. From a statistical viewpoint, the

clusters obtained by C-means can be interpreted as the Maximum Likelihood Estimates for

the cluster means if we assume that each cluster comes from a set of spherical Gaussian

distributions with different means but identical covariance matrices.

The previous problem was extended to consider fuzzy memberships (Dunn, 1973; Bezdek,

1981). The idea is to express our uncertainty that a data vector belongs to a specific cluster.

Alternatively, the “probability” of belonging to all existing clusters is taken into account by

allowing the u ji coefficients to range between 0 and 1. In this way, the optimization problem

becomes

V∗, U ∗ = arg min
V,U

N∑
i=1

C∑
j=1

um
ji‖yi − v j‖2

s.t. 0 ≤ u ji ≤ 1

∀i :
C∑

j=1

u ji = 1,

(23)

where m is a parameter that controls the fuzziness of the assignment (if m is close enough

to 1, then the algorithm tends to a crisp C-means), and U is a matrix whose i, j-th element

is equal to ui j . The last set of constraints expresses our certainty that each input vector must

belong to a specific cluster. The following iterative algorithm can be shown to converge to a

local minimum of the objective function:

1. Initialize V and U randomly.

2. Update the code vectors as follows:

v(k+1)
j =

∑N
i=1

(
u(k)

j i

)m
yi∑N

i=1

(
u(k)

j i

)m (24)

3. Update the fuzzy membership values as follows:

u(k+1)
j i = 1

∑C
l=1

(
‖yi −v(k)

j ‖
‖yi −v(k)

l ‖

) 2
m−1

. (25)

4. Repeat 2 and 3 until convergence.

This algorithm is derived by optimizing two surrogate problems: one in which the func-

tional is optimized for U leaving V as constant; and another in which the functional is

optimized for V given the previously calculated U .
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Pascual-Marqui et al. (2001) proposed a modification of the functional shown in (23)

by imposing two important constraints: the code vectors are distributed on a regular low-

dimensional grid and a penalization term is added in order to impose a smooth distribution

for the values of the code vectors on the grid. This new modification to the classical Fuzzy

C-means functional described previously is intended to create a new variant of the classical

Self-Organizing Maps (Kohonen, 1982) by keeping two of its most important properties:

faithfulness to the data and smooth distribution of the code vectors on the grid, allowing to

orderly map high-dimensional input data onto a low-dimensional map while conserving quite

consistently the original topological and metric relationships. The new algorithm is called

Smoothly distributed Fuzzy C-means, or FuzzySOM for short. The functional to minimize

is

V ∗, U ∗ = arg min
V,U

N∑
i=1

C∑
j=1

um
ji‖yi − v j‖2 − κtrV SV t )

s.t. 0 ≤ u ji ≤ 1

∀i :
C∑

j=1

u ji = 1,

(26)

where V is a matrix with all the code vectors v as columns, and S is a symmetric, positive

definite matrix introducing the smoothness constraints and κ is a multiplier that controls

the importance of the smoothness term. S is usually derived as S = Gt G where G is some

discrete gradient-like operator (therefore, S is in that case a discrete Laplacian-like operator).

Optimizing (26) in a similar way to (23) provides the same solution for the fuzzy membership

values, u(k+1)
j i , as in (25), while the update step for the code vectors is given by

v(k+1)
j =

∑N
i=1

(
u(k)

j i

)m
yi − κ

∑C
l=1
l 
= j

S jlv
(k)
l∑N

i=1

(
u(k)

j i

)m + κSj j

. (27)

It can be seen that the fuzzy SOM problem as well as its solution reduces to fuzzy C-means

if κ = 0.

The previous SOM can be further generalized Pascual-Montano et al. (2001) by introduc-

ing the concept of the probability density function of the input data p(y) and its approximation

by a kernel model

p(y) ≈ 1

c

C∑
j=1

Kα(y − v j ),

where Kα can be any kernel function used to estimate the probability density function and

α is a parameter defining the shape of the kernel. The general underlying idea is to find the

set of C surrogate data (code vectors) whose probability density function resembles as best

as possible the density of the input data.

Maximizing the log-likelihood of the observed data and regularizing the problem by

imposing the code vectors to lay on a low-dimensional, smooth map, we arrive to the following
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unconstrained optimization problem

V∗, α∗ = arg max
V,α

N∑
i=1

log

(
1

C

C∑
j=1

Kα(yi − v j )

)
− κ

2α
tr(V SV t ). (28)

This method is usually referred to as KerDenSOM (standing for Kernel Probability Density

Self-Organizing Map). The solution of this problem depends on the approximating kernel

used. If the Gaussian kernel (Kα (y) = 1

(2πα) f/2 exp(− ‖y‖2

2α
)) is used, then taking partial derivatives

of (28) with respect to V and α and setting them to zero gives

α(k+1) = 1

N f

N∑
i=1

C∑
j=1

u(k)
j i

∥∥yi − v(k)
j

∥∥2 + κ

N f
V SV t , (29)

where

u(k)
j i = Kα(k)

(
yi − v(k)

j

)∑C
l=1 Kα(k)

(
yi − v(k)

l

) , (30)

and the update equation for the code vector v(k+1)
j is provided by (27) with m = 1.

Unlike other SOM algorithms, KerDenSOM belongs can be very sensitive to the initial

conditions. To achieve a better maximum of (28) a deterministic annealing approach is

followed. In this approach the KerDenSOM algorithm is run until convergence for a set of κ

values (remind that κ controls the smoothness of the output map) between κ0 (very smooth)

and κF (very sharp). The output of one κ-run is used as initialization for the next. κ is varied

as κ (t) = exp(log κF − log κF −log κ0

T t), where t is the index of the current κ-run and T is the

total number of κ-runs. The value of κ is varied from κ0 down to κF and the best value is

chosen by calculating the randomized generalized cross-validation criteria of Wahba et al.

(1994).

Problem 4: Angular assignment

Before getting the experimental images into a reconstruction algorithm, their relative ori-

entation and shift must be determined, i.e., the corresponding Euler angles and shifts (see

(1)) must be estimated so that the different 2D images can be combined as projections of the

same 3D volume. This problem is actually an extension of the 2D alignment problem from

three to five parameters. The mathematics developed for the 2D case is still valid and most of

the algorithms are based on the maximization of the correlation between two images. Many

of the different approaches differ on the space (real space, Radon space, wavelet space, or

Fourier space) in which they perform the correlation maximization. Another difference of

some existing algorithms is the explicit use of the Central Section Theorem (CST) (Kak and

Slaney, 1987; Natterer and Wübbeling, 2001) that states that the 2D Fourier transform of a

projection image is a central slice of the 3D Fourier transform of the volume from which the

projection was taken.
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Extending the 2D alignment problem to 3D is straightforward and leads to the following

optimization problem:

s∗
0, φ

∗, θ∗, ψ∗ = arg max
s0,φ,θ,ψ

〈y, x(s0, φ, θ, ψ)〉
s.t. s0 ∈ S

φ0 ≤ φ ≤ φF

θ0 ≤ θ ≤ θF

ψ0 ≤ ψ ≤ ψF

(31)

Now x(s0, φ, θ, ψ) involves the projection along a direction determined by φ and θ of a

reference volume (supposed to be ideal at the moment) and the translation and rotation

(according to s0 and ψ) of the projected image.

Penczek, Grasucci, and Frank (1994) proposed an algorithm that performs an exhaustive

search in the parameter space to identify the parameters that maximize the likelihood of

observing each of the experimental images. The exhaustive search is performed on a regular

grid in the parameter space. For the sake of implementation, the reference volume is pro-

jected onto a set of fixed directions obtaining, thus, a library of reference projections. Each

experimental image is 2D aligned to each of the reference projections identifying the best 2D

transformation parameters if that experimental image were coming from the reference pro-

jection at hand. The reference projection and the 2D transformation parameters maximizing

the correlation between the two images define the optimal 3D transformation parameters. The

2D alignment is performed taking advantage of the Fourier transform correlation property

that greatly accelerates the search.

Radermacher (1994) proposed an algorithm that performs the exhaustive search in the

Radon space. The 3D Radon transform of a volume f (r) is defined as

f̂ (p, d) =
∫

R3

f (r)δ(p − 〈d, r〉)dr, (32)

i.e., the input volume is integrated over the plane perpendicular to d and defined by p = 〈d, r〉.
In this way, the 3D Radon transforms maps a volume into a set of 1D projections indexed

by the vector d. Similarly, the 2D Radon transform (or sinogram) of an image maps that

image into a set of 1D projections indexed by a vector d simply by integrating over lines. The

computation of the correlation is not so intuitive as in the real-space case (Penczek, Grasucci,

and Frank, 1994). However, it can be computed as the sum of the correlations of lines within

the 3D Radon transform of the reference volume and the lines of the 2D Radon transform of

the experimental images.

More recently, a new approach has been proposed in which the correlation between the

reference library images defined by Penczek, Grasucci, and Frank (1994) and the experimental

images are computed in the wavelet space Sorzano et al. (2004b). This space offers the

advantage of being able to compute the correlation in a coarse-to-fine fashion making use

of a decomposition of the correlation formula similar to that employed in (5). In this way,

images are first compared (correlated) at a coarse resolution. If they match sufficiently, they

progress to the comparison in the next stage in which the resolution is increased including

finer details. This process continues until all the image details have been considered. It has

been shown that this procedure is more robust to the presence of local minima in the objective

function.
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Library based algorithms are by far the most commonly used in EM. They all perform an

exhaustive search of the 3D transformation parameters by optimizing the correlation between

the experimental image at hand and a set of reference images in some space. However, there

are other algorithms that exploit the CST. A compact formulation of this theorem is given by

X (ωωω; φ, θ, ψ, s0) = F
(
Et

φ,θ,ψ H tωωω
)

e−i〈ωωω,s0〉, (33)

where X (ωωω; φ, θ, ψ, s0) is the 2D Fourier transform of the projection taken with 3D trans-

formation parameters φ, θ, ψ, s0. ωωω ∈ R2 is the 2D frequency vector. H is defined as in (1),

and F is the 3D Fourier transform of f . This formula indicates how to extract the 2D Fourier

transform of a projection from a volume f given a set of 3D transformation parameters.

Note that Fourier transforms are usually complex functions, and therefore their real and

imaginary part can be treated independently. Because of the CST, finding for the optimal 3D

transformation parameters can be done by minimizing the objective function (Jonic et al.,

2005)

E(φ, θ, ψ, s0) =
∑

ωωω∈Z2−{(0,0)}
w(ωωω)

[(
Re {X (ωωω; φ, θ, ψ, s0)}

σx
− Re {Y (ωωω)}

σy

)2

+
(

Im {X (ωωω; φ, θ, ψ, s0)}
σx

− Im {Y (ωωω)}
σy

)2
]

, (34)

where, Re and Im stand for the real and imaginary parts of the Fourier transform respectively,

w(ωωω) is a weighting function in Fourier space, and σx and σy accounts for possible different

scaling factors, σ 2
y = ∑

ωωω∈Z2−{(0,0)} ‖Y (ωωω)‖2, and σ 2
x = ∑

ωωω∈Z2−{(0,0)} ‖X (ωωω; φ, θ, ψ, s0)‖2.

The computation of the Fourier transform of the theoretical projection X (ωωω; φ, θ, ψ, s0)

implies that the Fourier transform of the volume must be interpolated. This can be solved

thanks to a continuous approximation of the Fourier transform of the volume using B-splines

(Unser, Aldroubi, and Eden, 1991; Unser, 1999). This fact is key since from now on, the 3D

transformation parameters can take any value and not only those in a predefined grid. At the

same time, we can resort to continuous optimization techniques much more powerful than

exhaustive search.

An optimization algorithm that is inspired by the Levenberg-Marquardt nonlinear regres-

sion (Thévenaz, Ruttiman, and Unser, 1998) is used for this minimization. This algorithm

achieves a gradual transition between quasi-Newton and gradient-descent steps. The specific

tradeoff depends on the goodness of a local model of the function being minimized. Briefly,

this method updates the transformation coefficients c = (φ, θ, ψ, s0) in an iterative fashion

c(k+1) = c(k) + �c(k), where �c is the solution of the equation system H̃ �c(k) = ∇E(c(k)).

There, ∇E(c(k)) is the gradient of the objective function with respect to the transforma-

tion coefficients evaluated at c(k), and H̃ is a modified version of the Hessian H such that

the component [H̃]i j = (1 + λ δi j ) [H]i j , where δi j = 1 − |sign(i − j)| is Kronecker’s delta.

When λ is large the step is more steepest-descent-like while, for small values of λ, it is more

Newton-like. The value of λ is adaptively modified according to successes or failures of c(k)

to minimize the given objective.

The authors of Jonic et al. (2005) used a diagonal approximation to the true Hessian based

only on first derivatives of the objective function. This is a fair approximation close to the

minimum. However, the procedure can benefit from a BFGS estimation of the Hessian (Press

et al., 1992). An advantage of the BFGS approximation to the Hessian is that it is always
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positive semi-definite, which is a mandatory requirement for the stability of a quasi-Newton

optimization algorithm. BFGS results in the following iterative approximation to the Hessian:

�c(k) = c(k+1) − c(k) (35)

�f(k) = ∇E
(
c(k+1)

) − ∇E
(
c(k)

)
(36)

�H c(k) = H(k) �c(k) (37)

H(k+1) = H(k) + �f(k) ⊗ �f(k)〈
�f(k), �c(k)

〉 − �H c(k) ⊗ �H c(k)(
�c(k)

)
H

(
k)

�c(k)

, (38)

where x ⊗ y = x yt . The Hessian estimate is initialized by the diagonal approximation of the

Hessian found in Thévenaz, Ruttiman, and Unser (1998) and is updated only on successful

estimates c(i), k 
= i . For keeping the semi-positive-definite quality of the estimate, this update

can only be performed if 〈�f(k), �c(k)〉 > 0 (Dennis and Schnabel, 1996, Chapter 9). The

combination of this Levenberg-Marquardt inspired algorithm with the BFGS approximation

of the Hessian was successfully tested by Sorzano et al. (2005b).

Another angular assignment approach that makes use of the CST is the so-called common-

lines search (Frank, 1996). This approach does not use any reference volume. On the contrary,

all the angular assignment is performed on the information of the sole set of experimental

images. Let us consider two different projections of the same volume. Since, due to the

CST, both are central slices of the 3D Fourier transform of the volume, then both slices

must share a line in Fourier space. Two different algorithms have been proposed for the

detection of the common lines (van Heel, 1987; Penczek, Grasucci, and Frank, 1994). Both

approaches are based on the maximization of the correlation index between any two lines of

the 2D Radon transform of the two projections. The main drawback of this stage of detecting

common lines between experimental images is that, due to the low SNR, it is not easy to reach

global maxima, and therefore, many false matches are returned. However, for high-symmetry

particles (like, icosahedral viruses), this is the standard approach.

For three projections, there are three pairs of common lines and their relative position

is uniquely determined. van Heel (1987) solved the angular assignment problem for three

projections using the directions of the common lines. However, it was not until (Penczek,

Zhu, and Frank, 1996) that the problem was practically solved for more than three projections

(assuming that the shift parameters were already solved). If there are N projections, there are

3(N − 1) free Euler angles to determine and N (N−1)
2

pairs of common lines. Penczek, Zhu,

and Frank (1996) maximizes the following functional

E(φ1, θ1, ψ1, . . . , φN , θN , ψN ) =
∫

R3

(
fi
(
Eφi ,θi ,ψi r

))2
dr (39)

where fi (r) is the volume whose 3D Fourier transform is formed by a single slice (on the XY

plane) whose content is the i-th projection, and φ1 = θ1 = ψ1 = 0, the actual objective func-

tion implemented is in Fourier space expressed in polar coordinates, however it is equivalent

to the one presented which is much more comprehensive. An exhaustive search is performed

on a regular grid for each of the Euler angles. The optimization procedure proceeds as fol-

lows: the three Euler angles corresponding to a given projection are optimized assuming that

the rest of projections are fixed. Then, the next projection is selected and optimized. When

all projections have been visited, it is said that a cycle has been completed. This procedure
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is iterated until none of the projections changed its orientation during a full cycle. Lindhal

(2001) extended this procedure to include the shift parameters during the optimization.

Finally, there is another approach that performs the angular assignment (without shifts)

by comparing the reference image 2D Radon transforms, and those of the experimental

images. However, before comparing the corresponding sinograms, each line of the sinogram

is projected onto a lower-dimensional space using Correspondence Analysis (Bellon, Cantele,

and Lanzavecchia, 2001; Bellon et al., 2002). The projection of all the lines of a sinogram

defines a closed trajectory in the projected space ỹi j , i spans the number of lines in the

sinogram while j the number of dimensions of the low dimension space. These trajectories

are periodic in the sense ỹi j = ỹi+k N , j for any integer k and being N is the number of lines in

the sinogram. The trajectory of the experimental image is denoted as ỹi j and the trajectory of

the reference projection at given φ, θ angles as x̃i j (φ, θ ). The projection direction is assigned

by comparing the trajectory of the experimental image at hand with those obtained in the

reference library. This comparison is performed by minimizing

φ∗, θ∗, m∗ = arg min
φ,θ,m

∑
i

( ∑
j

(ỹ
.
i j − x̃

.
i+m, j (φ, θ ))2

) 1
2

, (40)

where ỹ
.
i j = ỹi j −ỹi−1, j

‖ỹi −ỹi−1‖ , correspondingly for x̃
.
. m is a parameter that takes advantage of the

periodic nature of the closed trajectories to determine the ψ angle. The previous objective

function is optimized by exhaustive search.

Problem 5: 3D reconstruction

The problem of 3D reconstruction consists of producing a volume that is compatible with

the experimental projections acquired by the microscope. For this, it is absolutely mandatory

to have already assigned the point of view of each projection (angular assignment) and

have aligned the center of the projections. The most widely used reconstruction algorithm

employed in the field is called Weighted Back Projection (WBP) (Radermacher, 1992). This

algorithm sums the set of volumes obtained by backprojecting each of the experimental

images. It will not be further described in this review since it is not based on the optimization

of any functional.

There is a whole family of reconstruction algorithms called “Series Expansion Methods”,

i.e., it is assumed that a volume f can be approximated by a linear combination of a finite

set of known basis functions b j , each one of which is just the same function b shifted to one

of J grid points (denoted by g j ), as in

f (r) ≈
J∑

j=1

c j · b j (r) =
J∑

j=1

c j · b(r − g j ). (41)

The task of the algorithm is to estimate the unknown coefficients c j . A consequence of the

volume series expansion is an image formation model of the form:

yi ≈
J∑

j=1

li, j c j
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where yi is the i th measurement of the volume to be reconstructed (that is, a pixel value in

the experimental data) and li, j is the corresponding line integral of the basis function b j . The

values yi and c j form a M N -dimensional vector and a J -dimensional vector respectively

(which we will denote by y and c), where N is the number of projections and M is the number

of pixels per projection. The yi elements are arranged in such a way that all pixels belonging to

a projection are consecutive. Therefore, reconstructing the volume f is equivalent to solving

for c in the linear equation system

y = Lc. (42)

The i-th row of this equation system defines an hyperplane in the J -dimensional space given

by yi = li c. Solving for c in the previous equation system is the same as finding a point

c belonging to all the hyperplanes specified by the equation system. For this reason, the

reconstruction algorithms presented below are said to solve the “feasibility problem”.

One possible way of solving this equation system is by an Algebraic Reconstruction

Technique (ART, Herman (1980, 1998)). This is an iterative algorithm that updates a current

guess of the solution after correcting for the mismatching between the projection of the

current guess onto a given pixel (〈li(k), c(k)〉) and the actual measurement obtained at that

pixel (yi(k))

c(k+1) = c(k) + λ(k)
yi(k) − 〈

li(k), c(k)
〉∥∥li(k)

∥∥2
lti(k). (43)

i(k) is a sequence of indexes providing the order in which the measured pixels are accessed,

and λ(k) is a sequence of positive numbers called “relaxation factors”.

Let S be the set of points obtained by linear combination of the rows of the matrix L ,

S = {x | x = ∑M N
i=1 βi li }. LetLbe the set of feasible points, i.e., the set of points satisfying the

linear equation system. If c(0) ∈ S, then the sequence {c(k)} converges to c∗ = arg minc∈L ‖c‖.

In other words, among all the possible solutions of the equation system, the one with smallest

norm is chosen. This is interesting from the point of view of signal since the reconstruction

produced is the one with smallest variance, and therefore, the one with fewest features that is

compatible with the projection set. It is common practice to start the algorithm with c(0) = 0

since 0 belongs to S. Because of the noise present in the measurements and if the number of

measurements is larger than the number of unknowns in c, it is likely that L is empty, that is,

there is no volume that is at the same time compatible with all the projections. In this case,

the ART sequence converges to a cycle of points {c∗(k) : k = 1, 2, . . . , M N } with no special

property from the point of view of optimization (Herman, 1998).

Notice that (43) updates the current guess of the solution after considering each of the

pixels individually. This procedure has very interesting properties from the point of view

of rate of convergence (ART is, in general, one of the fastest algorithms for solving linear

equation systems). An alternative approach would update the current solution only after

considering all the updates of all the pixels at the same time

c(k+1) = c(k) + λ(k)
M N∑
i=1

(
yi − 〈

li , c(k)
〉)

lti = c(k) + λ(k) Lt
(
y − Lc(k)

)
. (44)

Notice that the normalizing factor ‖li‖2 has been removed. This algorithm is known as “Si-

multaneous Iterative Reconstruction Technique” (SIRT) and it belongs to a class of optimizers
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very useful in 3D reconstruction as will be shown below. The general class of optimizers is

defined as

c∗ = arg min
c∈K

‖D−1c‖, (45)

where

K =
{

c | c = arg min
c∈RJ

a(y − Lc)t A(y − Lc) + (c − c0)t (bB + cC−1)
(
c − c0

)}
,

(46)

A is a M N × M N matrix, B and C are J × J matrices, and a, b, c are nonnegative scalars.

If bB + cC−1 is a positive definite matrix, then the following sequence can be shown to

converge to the unique minimum of (45)

c(k+1) = c(k) + λ(k)
(
aC Lt A

(
y − Lc(k)

) + (bcB + cI )
(
c0 − c(k)

))
, (47)

where I is the identity J × J matrix. Otherwise, if bB + cC−1 is a matrix full of zeros, then

the following sequence can be shown to converge to the minimum norm minimum of (45)

c(k+1) = c(k) + λ(k) D2 Lt A
(
y − Lc(k)

)
. (48)

It can be easily seen that the SIRT-type algorithm presented in (44) is a particular case of

(48) where D and A are identity matrices. Iterations converge to c∗ = arg minc∈K ‖c‖ with

K = {c | c = arg minc∈RJ ‖y − Lc‖2}. In fact, if the image formation model is assumed to be

additive-noise, then this corresponds to the maximum likelihood solution if the noise values

are independent, identically and normally distributed and no prior information is available

about the distribution of c. Many other assumptions or constraints in 3D reconstruction

like imposing the solution to be smooth or the knowledge that it is normally distributed

around some known volume can be expressed in terms of an optimization problem like (45)

(Herman, 1980). The most used implementation of this algorithm is the one proposed by

Penczek, Radermacher, and Frank (1992).

Skoglund et al. (1996) give a completely different view of the reconstruction problem

formulating it from a constrained optimization perspective. Their goal is to produce the

minimally informative volume that is compatible with the projections. The idea is to avoid

overfitting the projections since they are known to be noisy. This is accomplished by max-

imizing the entropy of the reconstructed volume subject to a normalization constraint and

another constraint that avoids the overfitting

f ∗(x) = arg max
f (x)

−
∫

f (x) log

(
f (x)

f0(x)

)
d3x

s.t.

∫
f (x)d3x = 1

C (i)
r = 1 ∀i ∈ {1, . . . , N }

f (x) ≥ 0

(49)

where f0(x) is a volume known a priori to which the reconstruction resem-

bles, C (i)
r = 1

M

∑M
j=1

1
σ 2

j
(y(i)

j − (P (i) f ) j ) is called the reduced χ2 statistic, y(i)
j is the
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j-th pixel of the i-th experimental image, (P (i) f ) j is the corresponding pixel of the theoret-

ical projection in the same direction as yi , and σ 2
j is the local variance of the experimental

image at pixel j . The projection operator P (i) includes the CTF and some scaling factor to

adapt to the experimental projection values. The optimization technique employed in this

problem is iterative and approximates the objective function as well as the constraints at the

current estimate of the reconstructed volume by quadratic models, and then these models are

optimized yielding a new estimate of the reconstructed volume. This process is iterated until

convergence.

Problem 6: 3D Reconstruction performance

Most 3D reconstruction algorithms have free parameters to optimize like the relaxation factor

λ in the ART or SIRT-type algorithms. The problem is how to choose these parameters so

that the performance of the algorithm is optimal. In fact, a wrong choice for this kind of

parameters can lead to wrong conclusions. For instance, Boisset et al. (1998) reported an

elongation along a direction of overabundant projections when reconstructing with WBP or

SIRT. This elongation was indeed associated to the fact of the oversampling in the projection

space although it can be overcome by the appropriate selection of the free parameters of the

reconstruction algorithm (Sorzano et al., 2001).

The approach usually followed to optimize this performance can be briefly described as

follows (Furuie et al., 1994). Several realizations from a statistically defined set of phantoms

(artificial volumes) are created. These phantoms must resemble, in some way, the real objects

of interest (macromolecules). After that, the algorithm under study is run several times

varying randomly the set of noise variables (i.e., those variables that cannot be controlled in

a real-life experiment like the angular distribution or the noise realization) and using each

time a different free parameter. The experimental 3D reconstruction process is simulated

by projecting the phantoms in a realistic manner and making a 3D reconstruction from the

simulated data. Finally, the degree of accomplishment of the defined tasks is measured using

numerical observers called Figures of Merit (FOM). These FOMs compare the input of

the simulation process (the phantoms) with its outputs (the reconstructed volumes). Several

FOMs can be defined to measure the usefulness of the reconstruction for various tasks.

Some approaches to optimize the performance of the algorithm optimize a single FOM

(called training FOM) with respect to the free parameters (Furuie et al., 1994; Matej, Furuie,

and Herman, 1996; Matej et al., 1994; Sorzano et al., 2001). Because of the noisy nature

of the FOM measurements (images are noisy and the FOM measurement is subject to the

particular noise realization), the identification of the FOM optimimum is handled statistically.

The free parameter with the largest average of the training FOM is selected. Then, an interval

is chosen such that the average training FOM of all points within the interval is statistically

indistinguishable (usually measured as a t-Student test) from that with maximum training

FOM except in the interval extremes which must show an statistically-significant inferior

performance.

This approach provides useful results. However, it considers the information provided

by a single FOM although many of them can be defined. Other FOMs may capture some

information that cannot be observed with a single training FOM. If several FOMs are consid-

ered, the problem becomes a multiobjective optimization problem with noisy measurements.

A possible solution is to pick a value from the set of those λ that are not inferior to any

other choice of the parameter (a point λ1 is inferior to λ2 if and only if, for 1 ≤ i ≤ n ,

FOMi (λ1) ≤ FOMi (λ2) and, for some i , FOMi (λ1) < FOMi (λ2).) This set is termed the
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Pareto-optimal set. In other words, if a point is a Pareto optimum, one cannot increase any

of the FOMs selecting a surrounding point without decreasing some other FOM. However,

it can be shown (Sorzano et al., 2005a) that for some algorithms, for instance block ART,

all free parameters are Pareto optima. An algorithm is needed to select an interval within

the Pareto-optimal set. Again, a statistical approach was followed (Sorzano et al., 2005a)

although this time multivariate. Briefly, the optimization procedure can be summarized as

follows:

1. FOM normalization: Normalize the FOMs so that they have comparable values.

2. Removal of irrelevant FOMs: Remove all those FOMs that cannot detect differences

among the various values of the parameters.

3. FOM clustering: Cluster all those FOMs showing a similar dependency with the param-

eters. This was done by hierarchical clustering and validated by Principal Component

Analysis.

4. Cluster dimensionality reduction: Reduce the dimensionality of the clusters obtaining a

single representative of each cluster. This was accomplished by a weighted sum of the

PCA decomposition of each cluster.

5. Interval selection: Select an optimal region for the parameters using the information con-

tained in the cluster representatives. This is performed by constructing an interval for each

cluster representative as was already done for the training FOM, and then intersecting all

the intervals.

Problem 7: CTF estimation

As has been shown, most of the algorithms used in EM do not make use of the complete image

formation model given in Section 1. In common practice, the phase of CTF is corrected at

the beginning of the image processing, while its amplitude is corrected at the end. In order to

correct for the CTF, the CTF must be firstly estimated from the micrographs. This is done in

two steps. First, the Power Spectral Density (PSD) is estimated from the image. The result of

this stage is a real image in Fourier space P SD(ωωω). Second, this PSD is decomposed into two

theoretical models: one coming from the signal that is passing through the CTF, and another

one coming from the two noise sources (the one before CTF and the one after CTF, see the

image formation model in Section 1). The two theoretical models are parametrized with a

set of parameters � that includes things like the microscope voltage, the defocus, different

kind of aberrations, etc. For a complete description of the CTF model, the interested reader

is referred to Velázquez-Muriel et al. (2003), Zhu et al. (1997), and Ludtke, Baldwin, and

Chiu (1999). Thus, for a given set of parameters � we can express the power spectrum of a

projection view pφ,θ,ψ,s0
(s) as

PSDφ,θ,ψ,s0
(ωωω) = |CTF�(ωωω)|2 Fφ,θ,ψ,s0

(ωωω) + |CTF�(ωωω)|2PSDNb,�(ωωω)

+ PSDNa ,�(ωωω),

where ωωω is the two dimensional spatial frequency, P SDφ,θ,ψ,s0
(ωωω) is the Power Spectrum

Density of the experimental image at the frequency ωωω, |CTF�(ωωω)|2 is the Contrast Transfer

Function whose parameters are defined by �, Fφ,θ,ψ,s0
(ωωω) is the power spectrum density

of the ideal projection (also called structure factor), PSDNb,�(ωωω) is the power spectrum

density of the noise before CTF and whose actual parameters are also defined by the pa-

rameter set �, and finally PSDNa ,�(ωωω) is the power spectrum density of the noise after
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CTF with parameters given by �. The two noise terms can be combined into a single noise

term PSDN ,�(ωωω). The problem of the CTF estimation consists of estimating the vector �

that better fits the observed PSD (which has to be estimated from the experimental image

itself) given that the actual structure factors are unknown. It is difficult to have good es-

timates of the PSD from a single projection image, and therefore the PSD is obtained as

the average of several individual PSDs as long as the noise characteristics, the CTF and the

structure factors can be assumed to be approximately the same. Under these conditions we

can drop the subindices depending on a specific orientation and shift of the projection to

yield

PSD(ωωω) = |CTF�(ωωω)|2 F(ωωω) + PSDN ,�(ωωω), (50)

In this review we will discuss two different approaches that are relevant from an optimization

point of view: that of Velázquez-Muriel et al. (2003) (who assume that F(ωωω) = 0) and that

of Sinkevich et al. (2000) (who assume that P SDNb,�(ωωω) = 0). None of these assumptions

is practically fulfilled in real-life experiments: F(ωωω) would mean that there is no particle

in the micrograph field (which is not so untrue if the protein concentration is low), while

PSDNb,�(ωωω) = 0 would assume that there is no noise affected by the CTF (what is clearly

not true since most of the image is contaminated by the projection of the embedding ice

or the supporting carbon film). However, these two simplifications allow deriving practical

algorithms whose results are still of use.

Velázquez-Muriel et al. (2003) solves the estimation problem by minimizing the distance

between the observed PSD and the PSD that would be observed with parameters � from the

pure noise from a variety of point of views:

�∗ = arg min
�

k1

∑
ωωω∈�(�)

W (|ωωω|)
∣∣P SD(ωωω) − P SDN ,�(ωωω)

∣∣
|P SD(ωωω)|

+ k2

∑
ωωω∈�(�)

∣∣P̂SD(|ωωω|) − P̂SDN ,�(|ωωω|)∣∣
+ k3

∑
ωωω∈�(�)

∣∣∣P̂SD
′
(|ωωω|) − P̂SD

′
N ,�(|ωωω|)

∣∣∣
+ k4

∑
s∈R

∣∣log10 |psd(s)| − log10

∣∣psdN ,�(s)
∣∣∣∣∣∣log10 |psd(s)|∣∣

−k5

∑
ωωω∈�(�)

W (|ωωω|)(P SD(ωωω) − PSD)(P SDN ,�(ωωω) − PSDN ,�)√ ∑
ωωω∈�(�)

W (|ωωω|)(P SD(ωωω) − PSD)2
√ ∑

ωωω∈�(�)

W (|ωωω|)(P SDN ,�(ωωω) − PSDN ,�)2

s.t. � ∈ �feasible.

(51)

The first term in the objective measures the percentage distance between the two estimates

in Fourier space. This distance is weighted by a window function W (|ωωω|) that gives more

importance to low frequencies (small |ωωω|). This distance is measured over a region �(�)

that encomprises the region between the estimated first and fourth zeros of the CTF (see

the rings in the CTF image in Fig. 3). The second term measures the distance between the

corresponding radial averages (P̂SD and P̂SDN ,�). The third term measures the distance

between the derivatives of the radial averages. The derivative is computed using a discrete

approximation with five points due to Richardson. The fourth term measures the percentage

distance between both functions in real space within a fixed region R. The last term measures

the weighted correlation between both functions in Fourier space (PSD and PSDN ,� are the
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Fig. 3 Schematic work-flow of EM image processing analysis. Those areas with relevant optimization prob-
lems are highlighted in red and bold font

average values of the observed PSD and the PSD of the noise in Fourier space). Finally, the set

of parameters � (up to 23 parameters) must have a physical meaning. For instance, it makes

no sense to have a negative acceleration voltage within the microscope or an acceleration

voltage that is not in the range of currently built microscopes (between 80 kVolts and 1 M

Volts). This need for physical meaning restricts the set of feasible solutions.

The main features of this optimization problem is that it is medium-size, with a highly

nonlinear objective function, with boundary conditions (�feasible), and with highly nonlinear
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constraints (�(�)) depending on the current estimate of the solution. None of the derivatives

of the functions involved are known. This problem is currently solved in Velázquez-Muriel

et al. (2003) using Powell’s direction set method (Press et al., 1992, 10.5). This method

iteratively minimizes the objective function by minimizing it in as many successive directions

as the dimension of the problem (in this case 23). In each direction a line optimization is

performed. The set of directions is chosen so that each new direction added to the set is

conjugate of the set of already existing directions in the set. An interesting property of

conjugate directions is that minimizing along one of them does not spoil the minimization

achieved so far by minimizing in previous directions. It can be proved that this method

converges quadratically to the minimum of the function.

Other optimization techniques have been tried on this problem like trust-region methods

(Conn, Gould, and Toint, 2000). The main assumption of these methods is that the evaluation

of the objective function is very expensive (computation time, resources, etc.) For this reason,

the main optimization work is performed on a surrogate problem instead of the original

problem itself. A model of the objective function is built based on a number of measurements

of it. This initial measurements define the original trust-region (the region within which the

model is trusted). Then, the model is minimized within the trust-region. The evaluation of the

model is assumed to be much cheaper than the evaluation of the original objective function.

Once a minimum of the model is achieved, the original objective function is evaluated at the

minimum of the model. The new measurement is added to the model (one of the previous

ones must be discarded), the trust-region is increased or decreased depending whether the

minimum of the model corresponds to a decrease or increase of the objective function, and

the new model is again optimized. This process is iterated until convergence.

The experiments performed on this problem with a trust-region method showed a much

faster convergence to a minimum (smaller than the one found by Powell’s direction set

method) in terms of number of iterations and function evaluations (results unpublished).

However, despite of the complexity of the cost function in (51), the hypothesis that evaluating

the model was cheaper than evaluating the cost function was violated in this case, and in

practical terms the trust-region method is not applied for detecting the CTF in the EM field.

Sinkevich et al. (2000) solve the CTF estimation problem assuming there is no noise

before CTF, and therefore, the PSD of the observed micrograph is given by

PSD(ωωω) = |CTF�(ωωω)|2 F(ωωω) + PSDNa ,�(ωωω).

Furthermore, they work only on radial averages boiling down to the model

P̂SD(ω) = |ĈTF�(ω)|2 F̂(ω) + P̂SDNa ,�(ω),

where ω = |ωωω|.
This simplification automatically precludes the work with astigmatic images. Since F̂(ω) is

an unknown function that is common to all micrographs, these authors propose the estimation

of the CTF of M micrographs simultaneously and, as a side-product, to estimate the structure

factor F̂(ω). That is, to solve the following optimization problem:

�∗, F̂∗(ω) = arg min
�,F̂(ω)

M∑
m=1

∑
ω∈�

∣∣PSD(m)(ω)−|ĈTF
(m)

� (ω)|2 F̂(ω)−P̂SD
(m)

Na ,�(ω)
∣∣2

s.t. � ∈ �feasible

F̂(ω) ≥ 0

(52)
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where the superscript (m) denotes the evaluation of the corresponding quantity on the micro-

graph m. Note that in this case � is a fixed set of frequencies independent from the parameters

being estimated. Formulated like this, the CTF estimation becomes a constrained nonlinear

least squares problem. To solve it, Sinkevich et al. (2000) use a primal-dual interior-point

method (Wright, 1997); particularly, a Newton interior-point method (El-Bakry et al., 1996))

due to the ability of these methods to treat inequality constraints since in their formulation

the set �feasible is defined as the intersection of a number of inequalities.

An interesting result from Sinkevich et al. (2000) is that the solution for F̂(ω) for a given

� is

F̂∗
�(ω) =

∑M
m=1 |ĈTF

(m)

� (ω)|2(P SD(m)(ω) − P̂SD
(m)

Na ,�(ω)
)∑M

m=1 |ĈTF
(m)

� (ω)|4
(53)

Further information on this latter method can be found at Sinkevich (2000).

Problem 8: CTF amplitude correction

Once the CTF is identified, the next step is to correct for it. There exist several approaches

to do this in EM. Among them, only two are expressed as the solution of a minimization

problem.

Zhu et al. (1997) proposed to include the CTF in the projection operator L of the SIRT-type

reconstruction method described in (44). This is done by matrix multiplication with a matrix

C accounting for the convolution in real space with the inverse Fourier transform of the 3D

CTF. They assumed that the 3D CTF is well defined for a volume by radially symmetrizing

the 1D CTF. For doing this, it is necessary that the CTF is the same for all the projections used

in the reconstruction. In this version of the algorithm the solution is regularized by imposing

smoothness on the Laplacian of the volume. The Laplacian of the volume is computed by

a discrete approximation expressed by a matrix B. Thereby, the reconstruction algorithm

becomes

c(k+1) = c(k) + λ(k)((1 − κ)Ct Lt (y − Lc(k)) − κ Bt Bc(k)), (54)

where κ is a factor between 0 and 1 that balances the importance of the regularization term

with respect to the data term. This iterative method converges to the solution of minc∈K ‖c‖
where K = {c | c = arg minc∈RJ (1 − κ) ‖y − LCc‖2 + κ ‖Bc‖2}. This algorithm provides a

regularized least-squares solution of the equation system LCc = y. Zhu et al. (1997) shows

how to consider the case in which the projections have different CTFs. Basically, it consists

on grouping the set of projections by similar CTFs, and then applying a step like the one in

(54) for each group.

If the 2D CTF of each image is used instead of the 3D CTF, then the equation system

to solve is C Lc = y where now C is a matrix accounting for the spatial convolution of

each image with its own CTF. Instead of solving this equation system, Zubelli et al. (2003)

proposed to solve the normal equation

Lt Ct C Lc = Lt Ct y (55)

The problem in EM is that because of the decay of the CTF in high-frequency, the matrix

Lt Ct C L is singular or nearly singular, and therefore the equation system is ill-posed. As a

solution, Zubelli et al. (2003) proposed to modify the data as well as the CTF operator so
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that the new equation system

Lt C̃ t C̃ Lc = Lt C̃ t ỹ (56)

is not ill-conditioned. The solutions of this equation system are shown to be close to the ones

of (55). The following iterative algorithm

c
(t+1)
j = c

(t)
j

(Lt C̃ t ỹ) j(
Lt C̃ t C̃ Lc(t)

)
j

(57)

can be shown to converge to c∗ = arg minc∈RJ

∥∥Lt Ct C Lc − Lt Ct y
∥∥2

. This algorithm is due

to Chahine (1970) and one of its strengths is its simplicity since C̃ is a symmetric matrix, and

therefore, C̃ t = C̃ . Thus, all that needs to be done is to apply the modified CTF (this can be

very efficiently in Fourier Space) twice while projecting the volume and update the current

solution in a multiplicative manner.

Problem 9: The reconstruction process

In the 2D alignment problem, the common EM procedure to iteratively refine the transfor-

mation parameters was related to a pseudo Expectation-Maximization approach. The idea

was to start with a 2D model, to refine the projection translation and rotation parameters with

respect to that model, and to average the aligned projections. The new average served as a

model for the next iteration.

The 3D reconstruction process is carried out in a very much alike fashion. A first 3D model

of the macromolecule under study is proposed. Then, the 3D transformation parameters are

found using any of the techniques available for angular assignment. The aligned projections

are “averaged” using a 3D reconstruction algorithm. And the reconstructed volume serves

as a model for the next iteration of this process. Sometimes, the correction for the CTF

amplitude effects is included within the loop. This iterative process is a pseudo Expectation-

Maximization approach of the same kind as the one found in 2D alignment.

3. Conclusions

In this paper we have reviewed a wide range of optimization problems found in currently

used techniques in image processing of electron microscopy single-particles. As can be seen,

the set of optimization techniques needed to solve them is quite rich, picking methods of

nearly all kinds. However, there are still many open problems facing the EM community. We

list here a short list indicating some of them:� As was already pointed out in the “Classification problem” (see Problem 3), particles

are flexible objects. Hence, images from two biochemically and functionally identical

macromolecules from the same projection direction may not be exactly the same (except for

the noise) since the two molecules may be subjected to different forces within the sample

holder. For this reason, the two particles may have deformed slightly differently. This

fact severely affects the maximum achievable resolution since averaging flexible particles

results in a high-quality volume up to the minimum size of the flexible parts. Models of

the particle flexibility appeared very recently (Chacón, Tama, and Wriggers, 2003; Ming

et al., 2002; Tama, Wriggers, and Brooks, 2002) and have not yet been incorporated in the

image processing steps.
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databases (Berman et al., 2000; Boutselakis et al., 2003; Golovin et al., 2004). Unfortu-

nately, no EM reconstruction algorithm incorporates this information, that is, produces a

3D reconstruction compatible with the micrographs that maximizes the probability of be-

ing a particle (or what is the same: it shares the characteristics of the already reconstructed

molecules that perform a similar function).� Due to the presence of a high level of noise, usually reconstructed volumes are contaminated

by undesired artifacts that are still compatible with the acquired data. However, they are

due to the presence of the noise, CTF, lack of projection directions, etc. Reconstruction

algorithms should be regularized to minimize the presence of this kind of artifacts. Finding

the minimum norm solution (as shown in the Problem 5: 3D recontruction) is an attempt

in this line. However, more powerful regularization terms are needed to further improve

the quality of the reconstructed volumes.� Despite of the fact that computers are becoming more and more powerful, processing

time is becoming a bottle-neck in EM (Fernández et al., 2002; 2005) The amount of data

is increasing exponentially and, nowadays, it is normal to work with several dozens of

thousands images to achieve high resolution. Convergence rates of the different algorithms

and execution times are, therefore, currently even more important if the structure of a

macromolecule is to be solved in a reasonable time.

We hope the problematic described in this review encourage optimization researchers and

mathematicians to study and propose new methods that outperform the existing ones in a uni-

fied attempt to increase the resolution of the 3D reconstruction of biological macromolecules.
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