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new superfluid states. In particular, the environ-
ment may be optimized for the detection of
Majorana fermions at the surface of *He-B and
the Majorana-Weyl edge modes in chiral *He-A
(31). Predicted new p-wave superfluids include a
quasi-two~dimensional version of *He-A (a gapped
Px + ip, superfluid) (3) and a spatially modulated
phase (32). Such experiments on dimensionally
confined superfluid *He provide flexible model
systems, when coupled with quasi-classical theory,
for understanding topological superfluidity. This is
likely to have considerable impact on the emerging
field of topological quantum matter.
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3D Computational Imaging with
Single-Pixel Detectors

B. Sun,* M. P. Edgar,* R. Bowman,™? L, E. Vittert,> S. Welsh,* A, Bowman,? M. ]. Padgett®

Computational imaging enables retrieval of the spatial information of an object with the use of
single-pixel detectors. By projecting a series of known random patterns and measuring the
backscattered intensity, it is possible to reconstruct a two-dimensional (2D) image. We

used several single-pixel detectors in different locations to capture the 3D form of an object.
From each detector we derived a 2D image that appeared to be illuminated from a different
direction, even though only a single digital projector was used for illumination. From the
shading of the images, the surface gradients could be derived and the 3D object reconstructed.
We compare our result to that obtained from a stereophotogrammetric system using multiple
cameras. Our simplified approach to 3D imaging can readily be extended to nonvisible wavebands.

omputational imaging based on projected

patterns is an alternative technique to con-

ventional imaging and removes the need
for a spatially resolving detector. Instead, this
form of computational imaging infers the scene
by correlating the known spatial information of a
changing incident light field with the total re-
flected (or transmitted) intensity. For example,
two copies of a randomly generated light field
can be made with a beam splitter; one copy of the
light field interacts with the object and a non—
spatially resolving detector, and the other copy is
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recorded with a camera. Aggregating the corre-
lations between the two detectors yields an image
even though the light striking the camera has
never interacted with the object. This phenome-
non, called ghost imaging, has been demon-
strated in both the quantum and classical regimes
(1-9).

Such imaging systems can be simplified by
using a device capable of generating computer-
programmable random light fields, which obvi-
ates the requirement for the beam splitter and the
camera because knowledge of the light field is
held in the computer memory. This type of sys-
tem was initially called computational ghost im-
aging (/0) but is similar in approach to more
standard computational imaging systems, which
use projected light patterns [albeit usually highly
structured (/1, 12)]. We also note that the use of
projected patterns is related to the field of single-

pixel cameras (/3), where the programmable com-
ponent is used to filter the detected, rather than
illuminating, light.

In both single-pixel cameras and computa-
tional imaging systems, inverting the known ran-
dom patterns and the measured intensities is a
computational problem. A number of sophisti-
cated algorithms have been developed over the
years to improve the signal-to-noise ratio (SNR)
for different systems (/4, 15), but with appropn-
ate normalization (/6) a simple iterative algo-
rithm was adopted for this experiment.

Previous experiments in single-pixel compu-
tational imaging (9, /4, 16) were restricted to
relatively small (less than 10 cm) two-dimensional
(2D) images, mainly of 2D template objects or
2D outlines of 3D objects. In the present work,
we capture the 3D spatial form .of an object by
using several single-pixel detectors in different lo-
cations. A 2D image is derived from each detector
but appears as if it is illuminated differently from
the others. Comparing the shading information in
the images allows the surface gradient and hence
the 3D form of the surface to be reconstructed.

The experimental setup (Fig. 1) consists of a
digital light projector to illuminate objects with
random binary light patterns, four spatially sep-
arated single-pixel photodetectors to measure the
intensity of the reflected light, an analog-to-digital
converter to digitize the photodetector signals,
and a computer to generate the random speckle
pattern as well as perform 3D reconstructions of
the test object.

The digital light projector comprises a red,
green, and blue light-emitting diode illumina-
tion source and a digital micromirror device
(DMD) to generate the structured illumination

17 MAY 2013 VOL 340 SCIENCE www.sciencemag.org

Downloaded from wwvwv.sciencemaa.org on August 20, 2013



single-pixel
photodetector

B -J . s J
LJ X binary speckle computer
object patterns

Fig. 1. Experimental setup used for 3D surface reconstructions. The light projector illuminates the
object (head) with computer-generated random binary speckle patterns. The light reflected from the
object is collected on four spatially separated single-pixel photodetectors. The signals from the photo-
detectors are measured and used to reconstruct a computational image for each photodetector.
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Fig. 2. Source images from the four single-pixel detectors from 1000 to 1 million iterations.
The images from each photodetector are reconstructed using an iterative algorithm (described in the text).
The spatial information in each image is identical; however, the apparent illumination source is deter-
mined by the location of the relevant photodetector, indicated underneath. No postprocessing has been
applied to the images. The scale refers to the relative intensity of the images (in arbitrary units, 0 to 255).
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(see supplementary materials). Note that the large
operational bandwidth of the DMD (300 nm to
2 pm) enables the use of this technique at other
wavelengths that are potentially unsuitable for
existing imaging technologies.

The projected patterns are randomly distributed
binary patterns, with a black-to-white ratio of 1:1,
that are projected onto the object. The life-sized
mannequin head is positioned about 1 m from the
lens so that it fits within the projected pattern.
Four spatially separated single-pixel photodetec-
tors are positioned in the plane of the lens, sep-
arated by 500 mm and each pointing toward a
common point on the object to record the back-
scattered light. For every binary pattern projected,
the corresponding object intensity is measured
by each photodetector, and the data are fed to a
computer algorithm.

DMD-based projectors create color images
by displaying 24 binary images (bit planes) per
frame in quick succession. By alternating be-
tween a binary pattern and its inverse in subse-
quent bit planes, we can demodulate the measured
signal at the frequency of the bit plane projection
(1440 Hz) to isolate the backreflected signal from
light sources at other frequencies such as room
lighting. Because the speckle pattern has equal
numbers of black and white pixels, the measured
signals for each pattern can be normalized; this
has been shown to improve the SNR of the final
reconstruction (/6).

In all iterative techniques, a 2D representation
of the object is reconstructed by averaging the
product of the measured photodetector signal and
the incident pattern over many patterns. A se-
quence of M binary patterns, P (x, ¥), are reflected
from the object, giving a sequence of mea-
sured signals S;. The 2D reconstruction /(x, y),
which provides an estimate of the object, can be
stated as

1(x,y) = ((Si = SMIX(Pi(x,y) = Pilx,y))))
(1)

where angle brackets denote an ensemble aver-
age for M iterations, (1/M)Y ;.

Using Eq. 1, we obtain 2D reconstructions of
the object for each of the four photodetectors.
Because all the images are derived from the same
set of projected patterns, the (x, y) locations of the
features in each image are identical. However, the
intensity distribution in each image is different,
because the apparent lighting of the object is
dependent on the location of the detector used to
record the backscattered light (optical imaging
systems are reciprocal; see supplementary mate-
rials). Thus, in contrast fo imaging systems based
on multiple cameras, the perspective of the single-
pixel detector does not render geometrical distor-
tion to the object being imaged.

Depth information of a scene is normally lost
in a 2D image, but there are instances where it
can be inferred using a technique called “shape
from shading” (SFS) ({7, /8). From a single im-
age with one source of illumination, this method
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Fig. 3. 3D reconstruction of the object. Rendered views of the reconstructed facial surface derived by integration of the surface normal data and overlaid

with the reflectivity data (see movie S1).

A frontal view

oy

B profile view

Fig. 4. Comparison between computational imaging and a stereophotogrammetric imaging
system. Computational imaging (green) and stereophotogrammetric (blue) reconstructions of the
mannequin head, from frontal (A) and profile (B) viewpoints, are shown with anatomical landmarks

(color-coded green and blue, respectively) added.

relies on the shading caused by geometrical fea-
tures to reveal the depth of the scene. Many SFS
methods assume that the object exhibits uniform
Lambertian (matte) reflectance and that a single
light source is located at infinity, such that the
incoming lighting vector is constant across the
surface of the object. The test objects used in our
experiment exhibit Lambertian reflectance (see
supplementary materials) and so this assump-
tion is valid. An alternative technique, called
photometric stereo (19, 20), adopts the same as-
sumptions but uses multiple images, each with a
different illumination and taken from the same
viewpoint, similar to the types of images re-
trieved by our 3D computational imaging system.

The intensity of a pixel (x, y) in the image
obtained from the ith detector can be expressed as

Li(x, y) = Ia(d; - ) (2)

where /; is the source intensity, o is the surface
reflectivity, d; is the unit detector vector pointing
from the object to the detector, and # is the sur-

face normal unit vector for the object. Thus, for
N images, we can write Eq. 2 as

I(x,y) = I;0(D - 1) ®)

where D is an array containing the unit detector
vectors and / is an array containing the cor-
responding image intensities. For any pixel (x, y),
the unit surface normal is

R 1
] :Iisa(D_l D (4)

and the surface albedo (reflectivity) is
a=D" (5)

From these surface normals, calculated for each
pixel, it is possible to determine the gradient be-
tween adjacent pixels, from which we obtain the
surface geometry by integration. Because we re-
cord four images, the problem becomes overcon-
strained; the surface normals represent only two
degrees of freedom per pixel. We can thus re-
move our assumption of uniform reflectivity and

recover an estimate of the surface albedo o at the
same time as finding the object’s shape.

The gradients are integrated to find the shape
of the object, starting at the center and working
outward. The height of the surface at a given
point can be estimated from a nearest-neighbor
point using the height of that point and the gra-
dient of the surface. Because the center of each
pixel is associated with the measured gradient
data, we use the mean of the gradient at the
nearest-neighbor pixel and the gradient at the
pixel to be evaluated. For each point where
the height is being estimated, the value used is
the mean of the estimates from each nearest
neighbor.

After the integration has been performed to
provide an initial estimate of the object’s shape,
an optimization step refines the shape, where the
cost function is the sum of the squared differ-
ences between the gradients of the reconstructed
surface and the gradients recovered from the pho-
tometric stereo measurement. As described above,
it is possible to estimate the height of a pixel on
the basis of the height and gradient at each of its
neighboring pixels. Our simple optimization works
one pixel at a time, each iteration setting the pix-
el’s height such that it matches the mean estimate
from each of its nearest neighbors. In the case of
a pixel that is surrounded by other pixels with
height estimates, this corresponds to setting the
Laplacian of the reconstructed height field equal
to the Laplacian calculated from the measured
gradient data. In the case of pixels at the edge of
the object, this is equivalent to assuming that the
gradient measured perpendicular to the edge of
the object is accurate. These two criteria are sug-
gested by Horn (20). Because the optimal value
for any given pixel can be calculated quickly (in
both cases it is a linear operation), millions of
iterations could be carried out in a few minutes,
corresponding to approximately 100 passes over
each pixel on average.

Once the algorithm had been appropriately
calibrated by imaging flat and spherical surfaces
(with the same surface material and reflective prop-
erties), accounting for changes of the lighting
vector for different pixels across the object plane,
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the system was tested for objects with geometric
complexity. One object investigated was a life-
size white polystyrene mannequin head, with ap-
proximate dimensions 190 mm x 160 mm x 250 mm.
Using the 2D images shown in Fig. 2, we calcu-
lated for each pixel the reflectivity, the surface
normals, the surface gradient, and the estimated
depth as prescribed by our model. A standard 3D
graphic package was then used to visualize this
profile, overlaid with the reflectivity data, as il-
lustrated in Fig. 3.

To quantify the accuracy of our approach, we
compared the 3D reconstruction of the test object
with a 3D image captured from a stereophoto-
grammetric camera system. This latter system
uses a matching algorithm on the 2D images
from multiple cameras to recover the distance map
of an object from the cameras. The accuracy of
this system with facial shapes is well documented
(21) to have a root mean square error (RMSE) on
the order of 1 mm for central factal locations, but
the error can rise substantially (2 cm) at side
locations where the surface normals are close to
perpendicular to the line of sight.

To compare the facial profiles measured by
the two systems, we characterized the shapes ac-
cording to well-defined facial locations (22): nose
tip, mouth comers, etc. Figure 4 shows two sets
of 21 such anatomical landmarks superimposed
on these facial images by a trained observer. Af-
ter lateral and angular registration and subsequent
depth scaling, the RMSE of our 3D computa-
tional imager is found to be slightly below 4 mm.
In common with camera-based stereophotogram-
metry, the observed error is greater toward the
edge of the object, around the ears and upper

forehead. The increased error is a consequence
of the projected pattem expanding at greater depth
and highlights one limitation of the system. Our
approach to minimizing this effect is to use a lens
with suitable focal length for projection (see sup-
plementary material).

Beyond showing that high-quality images of
real-life objects can be captured using a single-
pixel photodetector, our experiment demonstrates
that by using a small number of single-pixel de-
tectors, computational imaging methods can yield
3D images. An important difference between our
technique and the multiple-camera approach is
that a single projector determines the spatial reso-
lution of the system, removing issues of pixel
alignment associated with multiple cameras. Fur-
thermore, reversing the fundamental imaging pro-
cess allows for the use of simpler, less expensive
detectors. The operational bandwidth of the sys-
tem is limited not by the efficiency of a pixelated
imaging detector but instead by the reflectivity of
the DMD used for light projection, whose effi-
ciency extends well beyond the visible spectrum.
The development of such technology—for exam-
ple, the use of a broadband white light source—
could enable computational imaging systems to
become a cheaper alternative for applications in
3D and multispectral imaging.
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Computationally Assisted
Identification of Functional

Inorganic Materials

Matthew S. Dyer,* Christopher Collins,® Darren Hodgeman,” Philip A. Chater,*
Antoine Demont,' Simon Romani,? Ruth Sayers,” Michael F. Thomas,® John B. Claridge,

George R. Darling,* Matthew J. Rosseinsky™*

The design of complex inorganic materials is a challenge because of the diversity of their potential
structures. We present a method for the computational identification of materials containing multiple
atom types in multiple geometries by ranking candidate structures assembled from extended modules
containing chemically realistic atomic environments. Many existing functional materials can be described
in this way, and their properties are often determined by the chemistry and electronic structure of their
constituent modules. To demonstrate the approach, we isolated the oxide Y, 24Ba; »5Caz 4gFe7.44CU0 56021,
with a largest unit cell dimension of over 60 angstroms and 148 atoms in the unit cell, by using a
combination of this method and experimental work and show that it has the properties necessary to

function as a solid oxide fuel-cell cathode.

he identification and synthesis of func-

I tional materials is a substantial challenge
for both experiment and theory, especially

for complex crystalline materials (those contain-

ing many atoms of different elements in distinct
geometries). There are a vast number of arrange-

www.sciencemag.org SCIENCE VOL 340

ments of the atoms in the unit cell of a complex
structure that need to be adequately sampled for
structural identification and prediction (/). Dif-
ferent theoretical approaches to this problem have
been developed; some involve an unbiased search
through the different atomic arrangements (2—7),

whereas others use existing chemical knowledge
and understanding to reduce the number of ar-
rangements considered (8-14).

In describing complex solid-state structures, it
is customary to break them down in terms of
modules or fragments and their combinations
(15). Structural units—such as blocks, rods, or
layers (as shown in Fig. 1, A and B, for two dif-
ferent structural families)}—derived from arche-
typal structures are combined by structure-building
operators. Within this approach, the combination
of two or more layers from different crystal struc-
tures, a concept known as polysomatism (/6),
has proved powerful. The diverse families de-
scribed as polysomatic series in terms of layers
include heterogeneous structural series of inter-
metallics (7); light-element networks, such as
the aluminum carbonitrides (/8) (Fig. 1A); min-
eral families (/9), such as the sapphirenes (20)
and biopyriboles (/6); and accretional series within
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