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Abstract—Multi-view images are acquired by a lensless 
compressive imaging architecture, which consists of an aperture 
assembly and multiple sensors. The aperture assembly consists of 
a two dimensional array of aperture elements whose 
transmittance can be individually controlled to implement a 
compressive sensing matrix. For each transmittance pattern of 
the aperture assembly, each of the sensors takes a measurement. 
The measurement vectors from the multiple sensors represent 
multi-view images of the same scene. We present theoretical 
framework for multi-view reconstruction and experimental 
results for enhancing quality of image using multi-view. 
 
Index Terms— Compressed sensing, Image sensors, Image 
reconstruction 

I. INTRODUCTION 
ENSLESS compressive imaging [1] is an effective 
architecture to acquire images using compressive sensing 

[2]. It consists of an aperture assembly and one or more 
sensors, but no lens is used. The transmittance of each 
aperture element is individually controllable. The sensors are 
used for taking compressive measurements. A compressive 
sensing matrix is implemented by adjusting the transmittance 
of the individual aperture elements according to the values of 
the sensing matrix. This architecture is distinctive in that the 
images acquired are not formed by any physical mechanism, 
such as a lens [3] or pinhole [4]. This results in the feature that 
no scene is out of focus, and the sharpness and resolution of 
images from the proposed architecture are only limited by the 
resolution of the aperture assembly, there is no blurring 
introduced by lens for scenes that are out of focus. 
Furthermore, the same architecture can be used for acquiring 
multimodal signals such as infrared, Terahertz [5] and 
millimeter wave images [6]. This architecture has application 
in surveillance [7]. 

The lensless compressive imaging architecture is well-
suited for multi-view imaging because multiple sensors may 
be used in conjunction with one aperture assembly, see Figure 
1. The cost of obtaining an additional viewpoint is simply that 
of adding a sensor to the device. For a given setting of 
transmittance, each sensor takes a measurement, and therefore, 
for a given sensing matrix, the sensors produce a set of 
measurement vectors simultaneously. Each measurement 
vector can be used to reconstruct an image independently 
without taking into consideration of other measurement 
vectors. However, although the images from multiple sensors 
are different, there is a high correlation between them, 
especially when the sensors are close to one another and when 
the scene is far away. The correlation between the images can 

be exploited to enhance the quality of the reconstructed 
images.  
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Figure 1. Lensless compressive imaging with two sensors. 

Multiple sensors with one aperture assembly may be used in 
the following three ways: 
Multi-view. In general, the measurement vectors from 
multiple sensors represent images of different views of a 
scene, creating multi-view images. This architecture allows a 
simple device to capture multi-view images simultaneously. 
Measurement increase. When the scene is sufficiently far 
away, the measurement vectors from the sensors may be 
considered to be independent measurements of a common 
image and they may be concatenated into a larger set of 
measurements to reconstruct the common image. This 
effectively increases number of measurements that are taken 
for the image in a given duration of time. 
Higher Resolution. When the scene is sufficiently far away, 
and when the sensors are properly positioned, the 
measurement vectors from the sensors may be considered to 
be the measurements made from a higher resolution image, 
and they may be used to reconstruct an image of the higher 
resolution than the number of aperture elements. 

The purpose of this paper is twofold. First, we present a 
theoretical framework for reconstructing multi-view images by 
using joint reconstruction, which exploits the correlation 
between the multiple viewpoints. Second, we present 
experimental results to demonstrate how the multiple sensors 
can be used in each of the above three ways.  

II. MATHEMATICAL FORMULATION 

A.  Virtual image and compressive measurements 

As shown in Figure 1, for a given sensor, e.g., (1)S , for each 
point ( , )x y  on the aperture assembly, there is a ray starting 
from a point, P , on the scene, passing through the point 
( , )x y , and ending at the sensor. Denote by ( , ; )r x y t  the 
intensity of the unique ray associated with point ( , )x y  on the 
aperture assembly at time t . An image ( , )I x y  of the scene 
detected by the sensor is defined as the integration of the ray 
in a time interval tΔ : 
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The image in (1) is defined for each sensor, and it is called a 
virtual image because there is not an actual image formed by 
any physical mechanism. The virtual image can be pixelized 
by the aperture assembly. Let an aperture element be denoted 
by 

ijE . Then the pixel value at the pixel ( , )i j  is given by 

 ( , ) ( , )
ijE

I i j I x y dxdy= ∫∫ . (2) 

When the aperture assembly is programmed to implement a 
compressive sensing matrix, the transmittance of each aperture 
element is set to equal the value of the corresponding entry in 
the sensing matrix. Let the sensing matrix A  be a random 
matrix whose entries, mna , are random numbers between 0 and 

1, and let ( , )mT x y  be the transmittance programmed 
according to row m  of A . Then the compressive 
measurements are given by  

, ( , )
,

( , ) ( , ) ( , ) or ,,m

m m q i j
i j

z T x y I x y dxdy a I i j z A I= = =∑∫∫ i (3) 

where q  is mapping from a 2D array to a 1D vector, and z  is 
the measurement vector, A  is the sensing matrix and I  is the 
vector representation of the pixelized image ( , )I i j . 
 It is well known [2] that image I  can be reconstructed from 
the measurements z  by, for example, solving the following 
minimization problem: 

 
1

min ,  subject to W I A I z⋅ ⋅ = , (4) 
where W  is some sparsifying operator such as total variation 
or framelets [7]. 

B.  Image decomposition 
We consider two sensors, (1)S  and (2)S , that are placed in a 

same plane parallel to the plane of aperture assembly, as in 
Figure 1. The sensors define two virtual images, (1) ( , )I x y  and 

(2) ( , )I x y . The geometry of the aperture assembly can be 

divided into two disjoint regions, (1)

CR  and (1)

DR , according to 
(1)S . Region (1)

CR  consists of the objects that can be seen by 

both (1)S  and (2)S ; that is, the objects appearing in (1)

CR  are 

common in both images (1) ( , )I x y  and (2) ( , )I x y . (1)

DR  

consists of the objects that can be only seen by (1)S ; that is, 

the objects appearing in (1)

DR  can only be found in (1) ( , )I x y . 
( 2)

CR  and ( 2)

DR  can be similarly defined as above by reversing 

the role of (1)S  and (2)S .  
The definition of (1)

CR  and ( 2)

CR  also defines a one-to-one 
mapping between them. Referring to Figure 1, the points 

where the rays (1)PS
HJJG

 and ( 2)PS
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 intersects the aperture 
assembly are mapped into each other. The mapping is defined 
as 
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where the relationship between ( , )x y  and ( , )x x y y+ Δ + Δ  is 
shown in Figure 1. 

Now the virtual images ( ) ( , )kI x y  can be decomposed 

according to ( )k

CR  and ( )k

DR  as follows 

 ( ) ( ) ( )( , ) ( , ) ( , ), 1, 2,k k k

C DI x y I x y I x y k= + =  (6) 

where  ( ) ( , )k

CI x y  has support on ( )k

CR  and ( ) ( , )k

DI x y has 

support on ( )k

DR . Furthermore, (1) ( , )CI x y  and ( 2 ) ( , )CI x y  are 
related through the following equations: 

 ( 2) (1) 21 (1) ( 2) 12( , ) ( ( , )), ( , ) ( ( , )).C C C CI x y I U x y I x y I U x y= =  (7) 
The significance of Eq (6) is that the two virtual images are 

decomposed into three components: one component is 
common to both images, and the other two components are 
unique to each individual image, as shown below 
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Since ( , )CI x y  is common in both images, its reconstruction 
may make use of the measurements from both sensors, and 
therefore, its quality may be enhanced as compared to only 
one sensor is used.  

Similarly, the pixelized images can be decomposed as 
           (1) (1) ( 2) ( 2), .C D C DI I I I U I I= + = ⋅ +  (9) 

In above,  U  is a matrix that performs shift and interpolating 

functions to approximate the operation of mapping 21U  
defined in (5). That is, CU I⋅  is a vector that approximates the 

pixelized 21( ( , ))CI U x y , as given by 

 ( ) 21( ( , )) ( ( , ))
ij

C CE
U I q i j I U x y dxdy⋅ ≈ ∫∫ . (10) 

C.  Joint reconstruction 
The vector components ,CI  (1)

DI  and ( 2)

DI  may be jointly 

reconstructed from the two measurement vectors, (1)z  and 
(2)z , made from the two sensors, (1)S  and (2)S . Let A  be the 

sensing matrix with which the measurements (1)z  and (2)z  are 
made. Then the optimization problem to solve is 
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In (11), 0σ >  is a normalization constant to account for the 
areas of the four regions ( )k

CR  and ( )k

DR , 1, 2k = . The 
significance of the joint reconstruction (11) lies in the fact that 
there are only three unknown components in (11) with two 
constraints (given by  (1)z  and ( 2)z ), as opposed to four 



 

unknown components with same number of constraints if the 
images are reconstructed independently from (4). Typically, 

CI  has much more nonzero entries than that of (1)

DI  and ( 2)

DI ,  
hence the number of unknowns is reduced by almost a half. 

D.  Measurement increase 
When the scene is sufficiently far away, the images from 

the two sensors are approximately the same, except for a shift 
equal to the distance d  between two sensors. Therefore, the 
common region ( )k

CR  covers the entire aperture assembly 
except for a border of width d . Consequently, compared to 
the common image ,CI the images (1)

DI  and ( 2)

DI  have small 
energy. This implies that problem (11) is mainly a problem for 
the common image ,CI while using two measurement vectors 

(1)z  and ( 2)z , twice as many measurements as when each of 

the images, (1)I  and ( 2)I , is reconstructed independently in (4)
. For this reason, multiple sensors may be considered as taking 
independent measurements for a same image if the scene is 
sufficiently far away. This can be used as a mechanism to 
increase the number of measurements taken during a given 
time duration. 

E.  Higher resolution 
For sufficiently far away scenes, multiple sensors may also 

be used as a mechanism to improve the resolution of the 
common image CI . If the distance, d , between two sensors is 
a non-integer multiple of the size of the aperture elements, 
then (1)I  and ( 2)I can be considered as two down-sampled 
images of a higher resolution image. The joint reconstruction 
can therefore be used to create a higher resolution image.  

Specifically, equation (8) can be rewritten as 
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= +

= − Δ − Δ +
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If the distance d  between two sensors is a non-integer 
multiple of the size of the aperture elements, then there is no 
overlapping of grid points ( , )x x y y− Δ − Δ  with the grid 

points ( , )x y . Therefore, equation (12) shows that images (1)I  

and ( 2)I  comprise different sampling of the same image CI , 

i.e.,  (1)I  samples CI  at points ( , )x y , while ( 2)I  samples CI  
at points ( , )x x y y− Δ − Δ . Consequently, the measurement 

vectors (1)z  and ( 2)z  can be used to reconstruct the image CI  
at both grid points ( , )x y  and ( , )x x y y− Δ − Δ . This results in 

an image CI  that has a higher resolution than given by the 
aperture elements.  

III. EXPERIMENT 
A lensless compressive imaging prototype with two sensors 

[1] is shown in Figure 2. It consists of a transparent 
monochrome liquid crystal display (LCD) screen and two 

photovoltaic sensors enclosed in a light tight box. The LCD 
screen functions as the aperture assembly while the 
photovoltaic sensors measure the light intensity. The 
photovoltaic sensors are tricolor sensors, which output the 
intensity of red, green and blue lights.  

 
Figure 2. Prototype device. Top: lab setup. Bottom left: the LCD 
screen as the aperture assembly. Bottom right: the sensor board with 
two sensors, indicated by the red circle. 

The LCD panel is configured to display 302x217 = 65534 
black or white squares. Each square represents an aperture 
element with transmittance of a 0 (black) or 1 (white). A 
Hadamard matrix of order N=65536 is used as sensing matrix, 
which allows a total number of 65534, corresponding to the 
total number of pixels in the image, independent 
measurements to be made by each sensor. In our experiments, 
we only make a fractional of the total number of 
measurements. We express the number of measurements taken 
and used in reconstruction as a percentage of the total number 
of pixels. For example, 25% of measurements means 16384 
measurements are taken and used in reconstruction, which is a 
quarter of the total number of pixels, 65534. In each 
experiment, a set of measurements is obtained by each sensor 
simultaneously. The two sensors are placed such that there is 
almost no vertical offset, and there is a horizontal offset of 
approximately 3.5 pixels. 

A.  Measurement increase 
We compare the quality of images by individual and joint 

reconstructions in Figure 3, which is composed of six images, 
arranged in two columns and three rows. On the top row, the 
two images are reconstructed by Eq (4) using 12.5% (left) and 
25% (right) of measurements taken from sensor 1 only. In the 
middle row, two images are the same; it is reconstructed by Eq 
(11) using 12.5% of measurements from each of the two 
sensors (for a combined 25%). On the bottom row, the two 
images are reconstructed by Eq (4) using 12.5% (left) and 



 

25% (right) of measurements taken from sensor 2 only. We 
can make a couple of observations from Figure 3. First, as 
expected, the images using 25% measurements from one 
sensor only are clearly better than the images using 12.5% 
measurements from one sensor only. That is, an image on the 
right column, top or bottom row, is better than an image on the 
left column, top or bottom row. Second, the image from joint 
reconstruction using measurements from both sensors is better 
than images using 12.5% measurements from one sensor only, 
and as good as the images using 25% measurements from one 
sensor only, i.e., in the left column, the middle image is better 
than top and bottom; in the right column, all three images are 
similar. In reconstructing the image in the middle row, 
although a total of 25% of measurements are used, these 
measurements are taken in a time interval during which each 
sensor only takes 12.5% of measurements. 

B.  Higher resolution 
In Figure 4, the top and bottom images are reconstructed 

individually by Eq (4) using 25% of measurements taken from 
each of sensor 1 and sensor 2, respectively. The middle image 
is reconstructed using joint reconstruction to a higher 
resolution, 604x217, by using 25% measurements from each 
of two sensors, taking the advantage that there is a 3.5 pixels 
horizontal offset between the two sensors. It is evident that the 
image in the middle is sharper due to twice the horizontal 
resolution.  
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Figure 3. Reconstruction using measurements from two sensors.  

 

 

 
Figure 4. Reconstruction to higher resolution using measurements 
from two sensors. 


