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Abstract
In this work we present an automatic algorithm to detect basic shapes in unorganized point clouds. The algorithm
decomposes the point cloud into a concise, hybrid structure of inherent shapes and a set of remaining points. Each
detected shape serves as a proxy for a set of corresponding points. Our method is based on random sampling and
detects planes, spheres, cylinders, cones and tori. For models with surfaces composed of these basic shapes only,
e.g. CAD models, we automatically obtain a representation solely consisting of shape proxies. We demonstrate
that the algorithm is robust even in the presence of many outliers and a high degree of noise. The proposed
method scales well with respect to the size of the input point cloud and the number and size of the shapes within
the data. Even point sets with several millions of samples are robustly decomposed within less than a minute.
Moreover the algorithm is conceptually simple and easy to implement. Application areas include measurement
of physical parameters, scan registration, surface compression, hybrid rendering, shape classification, meshing,
simplification, approximation and reverse engineering.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
AnalysisShape; Surface Fitting; I.3.5 [Computer Graphics]: Computational Geometry and Object ModelingCurve,
surface, solid, and object representations

1. Introduction

Due to the increasing size and complexity of geometric data
sets there is an ever-growing demand for concise and mean-
ingful abstractions of this data. Especially when dealing with
digitized geometry, e.g. acquired with a laser scanner, no
handles for modification of the data are available to the user
other than the digitized points themselves. However, in or-
der to be able to make use of the data effectively, the raw
digitized data has to be enriched with abstractions and pos-
sibly semantic information, providing the user with higher-
level interaction possibilities. Only such handles can pro-
vide the interaction required for involved editing processes,
such as deleting, moving or resizing certain parts and hence
can make the data more readily usable for modeling pur-
poses. Of course, traditional reverse engineering approaches
can provide some of the abstractions that we seek, but usu-
ally reverse engineering focuses on finding a reconstruction
of the underlying geometry and typically involves quite te-
dious user interaction. This is not justified in a setting where
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a complete and detailed reconstruction is not required at all,
or shall take place only after some basic editing operations
have been applied to the data. On the other hand, detecting
instances of a set of primitive geometric shapes in the point
sampled data is a means to quickly derive higher levels of ab-
straction. For example in Fig. 1 patches of primitive shapes
provide a coarse approximation of the geometry that could
be used to compress the point-cloud very effectively.

Another problem arising when dealing with digitized geom-
etry is the often huge size of the datasets. Therefore the
efficiency of algorithms inferring abstractions of the data
is of utmost importance, especially in interactive settings.
Thus, in this paper we focus especially on finding an effi-
cient algorithm for point-cloud shape detection, in order to
be able to deal even with large point-clouds. Our work is a
high performance RANSAC [FB81] algorithm that is capa-
ble to extract a variety of different types of primitive shapes,
while retaining such favorable properties of the RANSAC
paradigm as robustness, generality and simplicity. At the
heart of our algorithm are a novel, hierarchically structured
sampling strategy for candidate shape generation as well as
a novel, lazy cost function evaluation scheme, which signif-
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(a) Original (b) Approximation

Figure 1: The 372 detected shapes in the choir screen define a coarse approximation of the surface.

icantly reduces overall computational cost. Our method de-
tects planes, spheres, cylinders, cones and tori, but additional
primitives are possible. The goal of our algorithm is to reli-
ably extract these shapes from the data, even under adverse
conditions such as heavy noise.

As has been indicated above, our method is especially well
suited in situations where geometric data is automatically
acquired and users refrain from applying surface reconstruc-
tion methods, either due to the data’s low quality or due to
processing time constraints. Such constraints are typical for
areas where high level model interaction is required, as is the
case when measuring physical parameters or in interactive,
semi-automatic segmentation and postprocessing.

Further applications are, for instance, registering many scans
of an object, where detecting corresponding primitive shapes
in multiple scans can provide good initial matches. High
compression rates for point clouds can be achieved if prim-
itive shapes are used to represent a large number of points
with a small set of parameters. Other areas that can benefit
from primitive shape information include hybrid rendering
and shape classification. Additionally, a fast shape extraction
method as ours can serve as building block in applications
such as meshing, simplification, approximation and reverse
engineering and bears the potential of significant speed up.

2. Previous work

The detection of primitive shapes is a common problem en-
countered in many areas of geometry related computer sci-
ence. Over the years a vast number of methods have been
proposed which cannot all be discussed here in depth. In-
stead, here we give a short overview of some of the most
important algorithms developed in the different fields. We
treat the previous work on RANSAC algorithms separately
in section 2.1 as it is of special relevance to our work.

Vision In computer vision, the two most widely known
methodologies for shape extraction are the RANSAC
paradigm [FB81] and the Hough transform [Hou62]. Both
have been proven to successfully detect shapes in 2D as well
as 3D. RANSAC and the Hough transform are reliable even

in the presence of a high proportion of outliers, but lack of
efficiency or high memory consumption remains their ma-
jor drawback [IK88]. For both schemes, many acceleration
techniques have been proposed, but no one on its own, or
combinations thereof, have been shown to be able to provide
an algorithm as efficient as ours for the 3D primitive shape
extraction problem.

The Hough transform maps, for a given type of parameter-
ized primitive, every point in the data to a manifold in the pa-
rameter space. The manifold describes all possible variants
of the primitive that contain the original point, i.e. in practice
each point casts votes for many cells in a discretized param-
eter space. Shapes are extracted by selecting those parame-
ter vectors that have received a significant amount of votes.
If the parameter space is discretized naively using a simple
grid, the memory requirements quickly become prohibitive
even for primitives with a moderate number of parameters,
such as, for instance, cones. Although several methods have
been suggested to alleviate this problem [IK87] [XO93] its
major application area remains the 2D domain where the
number of parameters typically is quite small. A notable ex-
ception is [VGSR04] where the Hough transform is used to
detect planes in 3D datasets, as 3D planes still have only a
small number of parameters. They also propose a two-step
procedure for the Hough based detection of cylinders that
uses estimated normals in the data points.

In the vision community many approaches have been pro-
posed for segmentation of range images with primitive
shapes. When working on range images these algorithms
usually efficiently exploit the implicitly given connectiv-
ity information of the image grid in some kind of region
growing or region merging step [FEF97] [GBS03]. This is
a fundamental difference to our case, where we are given
only an unstructured cloud of points that lacks any explicit
connectivity information. In [LGB95] and [LJS97] shapes
are found by concurrently growing different seed primi-
tives from which a suitable subset is selected according to
an MDL criterion (coined the recover-and-select paradigm).
[GBS03] detect shapes using a genetic algorithm to optimize
a robust MSAC fitness function (see also sec. 2.1). [MLM01]
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introduce involved non-linear fitting functions for primitive
shapes that are able to handle geometric degeneracy in the
context of recover-and-select segmentation.

Another robust method frequently employed in the vision
community is the tensor voting framework [MLT00] which
has been applied to successfully reconstruct surface geome-
try from extremely cluttered scenes. While tensor voting can
compete with RANSAC in terms of robustness, it is, how-
ever, inherently model-free and therefore cannot be applied
to the detection of predefined types of primitive shapes.

Reverse engineering In reverse engineering, surface re-
covery techniques are usually based on either a separate seg-
mentation step or on a variety of region growing algorithms
[VMC97] [SB95] [BGV∗02]. Most methods call for some
kind of connectivity information and are not well equipped
to deal with a large amount of outliers [VMC97]. Also these
approaches try to find a shape proxy for every part of the pro-
cessed surface with the intent of loading the reconstructed
geometry information into a CAD application. [BMV01] de-
scribe a system which reconstructs a boundary representa-
tion that can be imported into a CAD application from an
unorganized point-cloud. However, their method is based on
finding a triangulation for the point-set, whereas the method
presented in this work is able to operate directly on the input
points. This is advantageous as computing a suitable tessela-
tion may be extremely costly and becomes very intricate or
even ill-defined when there is heavy noise in the data. We do
not, however, intend to present a method implementing all
stages of a typical reverse engineering process.

Graphics In computer graphics, [CSAD04] have recently
proposed a general variational framework for approximation
of surfaces by planes, which was extended to a set of more
elaborate shape proxies by [WK05]. Their aim is not only
to extract certain shapes in the data, but to find a globally
optimal representation of the object by a given number of
primitives. However, these methods require connectivity in-
formation and are, due to their exclusive use of least squares
fitting, susceptible to errors induced by outliers. Also, the
optimization procedure is computationally expensive, which
makes the method less suitable for large data sets. The out-
put of our algorithm, however, could be used to initialize
the set of shape proxies used by these methods, potentially
accelerating the convergence of the optimization procedure.
While the Hough transform and the RANSAC paradigm
have been mainly used in computer vision some applica-
tions have also been proposed in the computer graphics com-
munity. [DDSD03] employ the Hough transform to identify
planes for billboard clouds for triangle data. They propose
an extension of the standard Hough transform to include a
compactness criterion, but due to the high computational de-
mand of the Hough transform, the method exhibits poor run-
time performance on large or complex geometry. [WGK05]
proposed a RANSAC-based plane detection method for hy-
brid rendering of point clouds. To facilitate an efficient plane

detection, planes are detected only in the cells of a hier-
archical space decomposition and therefore what is essen-
tially one plane on the surface is approximated by several
planar patches. While this is acceptable for their hybrid ren-
dering technique, our method finds maximal surface patches
in order to yield a more concise representation of the ob-
ject. Moreover, higher order primitives are not considered
in their approach. [GG04] detect so-called slippable shapes
which is a superset of the shapes recognized by our method.
They use the eigenvalues of a symmetric matrix derived from
the points and their normals to determine the slippability
of a point-set. Their detection is a bottom-up approach that
merges small initial slippable surfaces to obtain a global de-
composition of the model. However the computation of the
eigenvalues is costly for large models, the method is sen-
sitive to noise and it is hard to determine the correct size
of the initial surface patches. A related approach is taken by
[HOP∗05]. They also use the eigenvalues of a matrix derived
from line element geometry to classify surfaces. A RANSAC
based segmentation algorithm is employed to detect several
shapes in a point-cloud. The method is aimed mainly at mod-
els containing small numbers of points and shapes as no opti-
mizations or extensions to the general RANSAC framework
are adopted.

2.1. RANSAC

The RANSAC paradigm extracts shapes by randomly draw-
ing minimal sets from the point data and constructing cor-
responding shape primitives. A minimal set is the smallest
number of points required to uniquely define a given type
of geometric primitive. The resulting candidate shapes are
tested against all points in the data to determine how many
of the points are well approximated by the primitive (called
the score of the shape). After a given number of trials, the
shape which approximates the most points is extracted and
the algorithm continues on the remaining data. RANSAC ex-
hibits the following, desirable properties:

• It is conceptually simple, which makes it easily extensible
and straightforward to implement

• It is very general, allowing its application in a wide range
of settings

• It can robustly deal with data containing more than 50%
of outliers [RL93]

Its major deficiency is the considerable computational de-
mand if no further optimizations are applied.

[BF81] apply RANSAC to extract cylinders from range
data, [CG01] use RANSAC and the gaussian image to find
cylinders in 3D point clouds. Both methods, though, do not
consider a larger number of different classes of shape prim-
itives. [RL93] describe an algorithm that uses RANSAC to
detect a set of different types of simple shapes. However,
their method was adjusted to work in the image domain or
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on range images, and they did not provide the optimization
necessary for processing large unstructured 3D data sets.

A vast number of extensions to the general RANSAC
scheme have been proposed. Among the more recent ad-
vances, methods such as MLESAC [TZ00] or MSAC [TZ98]
improve the robustness of RANSAC with a modified score
function, but do not provide any enhancement in the perfor-
mance of the algorithm, which is the main focus of our work.
Nonetheless the integration of a MLESAC scoring function
is among the directions of our future work. [Nis05] pro-
poses an acceleration technique for the case that the num-
ber of candidates is fixed in advance. As it is a fundamen-
tal property of our setup that an unknown large number of
possibly very small shapes has to be detected in huge point-
clouds, the amount of necessary candidates cannot, however,
be specified in advance.

3. Overview

Given a point-cloud P = {p1, . . . , pN} with associated nor-
mals {n1, . . . ,nN} the output of our algorithm is a set of
primitive shapes Ψ = {ψ1, . . . ,ψn} with corresponding dis-
joint sets of points Pψ1 ⊂ P, . . . ,Pψn ⊂ P and a set of re-
maining points R = P \ {Pψ1 , . . . ,Pψn}. Similar to [RL93]
and [DDSD03], we frame the shape extraction problem as
an optimization problem defined by a score function. The
overall structure of our method is outlined in pseudo-code
in algorithm 1. In each iteration of the algorithm, the prim-
itive with maximal score is searched using the RANSAC
paradigm. New shape candidates are generated by randomly
sampling minimal subsets of P using our novel sampling
strategy (see sec. 4.3). Candidates of all considered shape
types are generated for every minimal set and all candidates
are collected in the set C. Thus no special ordering has to be
imposed on the detection of different types of shapes. After
new candidates have been generated the one with the high-
est score m is computed employing the efficient lazy score
evaluation scheme presented in sec. 4.5. The best candidate
is only accepted if, given the size |m| (in number of points)
of the candidate and the number of drawn candidates |C|,
the probability P(|m|, |C|) that no better candidate was over-
looked during sampling is high enough (see sec. 4.2.1). We
provide an analysis of our sampling strategy to derive a suit-
able probability computation. If a candidate is accepted, the
corresponding points Pm are removed from P and the can-
didates Cm generated with points in Pm are deleted from C.
The algorithm terminates as soon as P(τ, |C|) for a user de-
fined minimal shape size τ is large enough.

In our implementation we use a standard score function that
counts the number of compatible points for a shape candi-
date [RL93] [GBS03]. The function has two free parame-
ters: ε specifies the maximum distance of a compatible point
while α restricts the deviation of a points’ normal from that
of the shape. We also ensure that only points forming a con-

nected component on the surface are considered (see sec.
4.4).

Algorithm 1 Extract shapes in the point cloud P
Ψ← /0 {extracted shapes}
C← /0 {shape candidates}
repeat
C← C∪ newCandidates() {see sec. 4.1 and 4.3}
m← bestCandidate(C) {see sec. 4.4}
if P(|m|, |C|) > pt then
P ← P \Pm {remove points}
Ψ←Ψ∪m
C← C \Cm {remove invalid candidates}

end if
until P(τ, |C|) > pt
return Ψ

4. Our method

4.1. Shape estimation

As mentioned above, the shapes we consider in this work
are planes, spheres, cylinders, cones and tori which have be-
tween three and seven parameters. Every 3D-point pi sam-
ple fixes only one parameter of the shape. In order to reduce
the number of required points we compute an approximate
surface normal ni for each point [HDD∗92], so that the ori-
entation gives us two more parameters per sample. That way
it is possible to estimate each of the considered basic shapes
from only one or two point samples. However, always using
one additional sample is advantageous, because the surplus
parameters can be used to immediately verify a candidate
and thus eliminate the need of evaluating many relatively
low scored shapes [MC02].

Plane For a plane, {p1, p2, p3} constitutes a minimal set
when not taking into account the normals in the points. To
confirm the plausibility of the generated plane, the deviation
of the plane’s normal from n1,n2,n3 is determined and the
candidate plane is accepted only if all deviations are less than
the predefined angle α .

Sphere A sphere is fully defined by two points with corre-
sponding normal vectors. We use the midpoint of the short-
est line segment between the two lines given by the points
p1 and p2 and their normals n1 and n2 to define the center
of the sphere c. We take r = ‖p1−c‖+‖p2−c‖

2 as the sphere ra-
dius. The sphere is accepted as a shape candidate only if all
three points are within a distance of ε of the sphere and their
normals do not deviate by more than α degrees.

Cylinder To generate a cylinder from two points with nor-
mals we first establish the direction of the axis with a =
n1× n2. Then we project the two parametric lines p1 + tn1
and p2 + tn2 along the axis onto the a · x = 0 plane and take
their intersection as the center c. We set the radius to the dis-
tance between c and p1 in that plane. Again the cylinder is
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verified by applying the thresholds ε and α to distance and
normal deviation of the samples.

Cone Although the cone, too, is fully defined by two
points with corresponding normals, for simplicity we use all
three points and normals in its generation. To derive the po-
sition of the apex c, we intersect the three planes defined by
the point and normal pairs. Then the normal of the plane de-
fined by the three points {c + p1−c

‖p1−c‖ , . . . ,c + p3−c
‖p3−c‖} gives

the direction of the axis a. Now the opening angle ω is given
as ω = ∑i arccos((pi−c)·a)

3 . Afterwards, similar to above, the
cone is verified before becoming a candidate shape.

Torus Just as in the case of the cone we use one more
point than theoretically necessary to ease the computations
required for estimation, i.e. four point and normal pairs. The
rotational axis of the torus is found as one of the up to
two lines intersecting the four point-normal lines pi + λni
[MLM01]. To choose between the two possible axes, a full
torus is estimated for both choices and the one which causes
the smaller error in respect to the four points is selected. To
find the minor radius, the points are collected in a plane that
is rotated around the axis. Then a circle is computed using
three points in this plane. The major radius is given as the
distance of the circle center to the axis.

4.2. Complexity

The complexity of RANSAC is dominated by two major fac-
tors: The number of minimal sets that are drawn and the cost
of evaluating the score for every candidate shape. As we de-
sire to extract the shape that achieves the highest possible
score, the number of candidates that have to be considered
is governed by the probability that the best possible shape is
indeed detected, i.e. that a minimal set is drawn that defines
this shape.

4.2.1. Probabilities

Consider a point cloud P of size N and a shape ψ therein
consisting of n points. Let k denote the size of a minimal set
required to define a shape candidate. If we assume that any
k points of the shape will lead to an appropriate candidate
shape then the probability of detecting ψ in a single pass is:

P(n) =
(

n
k

)/(
N
k

)
≈

( n
N

)k
(1)

The probability of a successful detection P(n,s) after s can-
didates have been drawn equals the complementary of s con-
secutive failures:

P(n,s) = 1− (1−P(n))s (2)

Solving for s tells us the number of candidates T required to
detect shapes of size n with a probability P(n,T )≥ pt :

T ≥ ln(1− pt)
ln(1−P(n))

(3)

Figure 2: A small cylinder that has been detected by our
method. The shape consists of 1066 points and was detected
among 341,587 points. That corresponds to a relative size of
1/3000.

For small P(n) the logarithm in the denominator can be
approximated by its Taylor series ln(1−P(n)) = −P(n) +
O(P(n)2) so that:

T ≈ − ln(1− pt)
P(n)

(4)

Given the cost C of evaluating the cost function, the asymp-
totic complexity of the RANSAC approach is O(TC) =
O( 1

P(n)C).

4.3. Sampling strategy

As can be seen from the last formula, the runtime complexity
is directly linked to the success rate of finding good sample
sets. Therefore we will now discuss in detail how sampling
is performed.

4.3.1. Localized sampling

Since shapes are local phenomena, the a priori probability
that two points belong to the same shape is higher the smaller
the distance between the points. In our sampling strategy we
want to exploit this fact to increase the probability of draw-
ing minimal sets that belong to the same shape. [MTN∗02]
have shown that non-uniform sampling based on locality
leads to a significantly increased probability of selecting a
set of inliers. From a ball of given radius around an ini-
tially unrestrainedly drawn sample the remaining samples
are picked to obtain a complete minimal set. This requires
to fix a radius in advance, which they derive from a known
(or assumed) outlier density and distribution. In our setup
however, outlier density and distribution vary strongly for
different models and even within in a single model, which
renders a fixed radius inadequate. Also, in our case, using
minimal sets with small diameter introduces unnecessary
stability issues in the shape estimation procedure for shapes
that could have been estimated from samples spread farther
apart. Therefore we propose a novel sampling strategy that is
able to adapt the diameter of the minimal sets to both, outlier
density and shape size.
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We use an octree to establish spatial proximity between sam-
ples very efficiently. When choosing points for a new candi-
date, we draw the first sample p1 without restrictions among
all points. Then a cell C is randomly chosen from any level
of the octree such that p1 is contained in C. The k−1 other
samples are then drawn only from within cell C.

The effect of this sampling strategy can be expressed in a
new probability Plocal(n) for finding a shape ψ of size n:

Plocal(n) = P(p1 ∈ ψ)P(p2 . . . pk ∈ ψ|p2 . . . pk ∈C) (5)

The first factor evaluates to n/N. The second factor obvi-
ously depends on the choice of C. C is well chosen if it con-
tains mostly points belonging to ψ . The existence of such a
cell is backed by the observation that for most points on a
shape, except on edges and corners, there exists a neighbor-
hood such that all of the points therein belong to that shape.
Although in general it is not guaranteed that this neighbor-
hood is captured in the cells of the octree, in the case of
real-life data, shapes have to be sampled with an adequate
density for reliable representation and, as a consequence, for
all but very few points such a neighborhood will be at least
as large as the smallest cells of the octree. For the sake of
analysis, we assume that there exists a C for every pi ∈ ψ

such that ψ will be supported by half of the points in C,
which accounts for up to 50% local noise and outliers. We
conservatively estimate the probability of finding a good C
by 1

d where d is the depth of the octree (in practice a path of
cells starting at the highest good cell to a good leaf will be
good as well). The conditional probability for p2, p3 ∈ ψ in

the case of a good cell is then described by (|C|/2
k−1 )

( |C|k−1)
≈ ( 1

2 )k−1.

And substituting yields:

Plocal(n) =
n

Nd2k−1 (6)

As large shapes can be estimated from large cells (and with
high probability this will happen), the stability of the shape
estimation is not affected by the sampling strategy.

The impact of this sampling strategy is best illustrated with
an example. The cylinder depicted in Figure 2 consists of
1066 points. At the time that it belongs to one of the largest
shapes in the point-cloud, 341,547 points of the original 2
million still remain. Thus, it then comprises only three thou-
sandth of the point-cloud. If an ordinary uniform sampling
strategy were to be applied, 151,522,829 candidates would
have to be drawn to achieve a detection probability of 99%.
With our strategy only 64,929 candidates have to be gen-
erated for the same probability. That is an improvement by
three orders of magnitude, i.e. in this case that is the differ-
ence between hours and seconds.

4.3.1.1. Level weighting Choosing C from a proper level
is an important aspect of our sampling scheme. Therefore we
can further improve the sampling efficiency by choosing C
from a level according to a non-uniform distribution that re-
flects the likelihood of the respective level to contain a good

cell. To this end, the probability Pl of choosing C from level
l is first initialized with 1

d . Then for every level l, we keep
track of the sum σl of the scores achieved by the candidates
generated from a cell on level l. After a given number of
candidates has been tested, a new distribution for the levels
is computed. The new probability P̂l of the level l is given as

P̂l = x
σl

wPl
+(1− x)

1
d

, (7)

where w = ∑
d
i=1

σ

Pi
. We set x = .9 to ensure that at all times

at least 10% of the samples are spread uniformly over the
levels to be able to detect when new levels start to become
of greater importance as more and more points are removed
from P .

4.3.2. Number of candidates

In section 4.2 we gave a formula for the number of candi-
dates necessary to detect a shape of size n with a given prob-
ability. However, in our case, the size n of the largest shape is
not known in advance. Moreover, if the largest candidate has
been generated early in the process we should be able to de-
tect this lucky case and extract the shape well before achiev-
ing a precomputed number of candidates while on the other
hand we should use additional candidates if it is still unsure
that indeed the best candidate has been detected. Therefore,
instead of fixing the number of candidates, we repeatedly an-
alyze small numbers t of additional candidates and consider
the best one ψm generated so far each time. As we want to
achieve a low probability that a shape is extracted which is
not the real maximum, we observe the probability P(|ψm|,s)
with which we would have found another shape of the same
size as ψm. Once this probability is higher than a threshold
pt (we use 99%) we conclude that there is a low chance that
we have overlooked a better candidate and extract ψm. The
algorithm terminates as soon as P(τ,s) > pt .

4.4. Score

The score function σP is responsible for measuring the qual-
ity of a given shape candidate. We use the following aspects
in our scoring function:

• To measure the support of a candidate, we use the number
of points that fall within an ε-band around the shape.

• To ensure that the points inside the band roughly follow
the curvature pattern of the given primitive, we only count
those points inside the band whose normals do not deviate
from the normal of the shape more than a given angle α .

• Additionally we incorporate a connectivity measure:
Among the points that fulfill the previous two conditions,
only those are considered that constitute the largest con-
nected component on the shape.

c© The Eurographics Association and Blackwell Publishing 2007.



Ruwen Schnabel & Roland Wahl & Reinhard Klein / Efficient RANSAC for Point-Cloud Shape Detection

More formally, given a shape ψ whose fidelity is to be eval-
uated, σP is defined as follows:

σP (ψ) = |Pψ | ,

i.e. we count the number of points in Pψ . Pψ is defined in
the following two steps:

P̂ψ = {p|p∈P∧d(ψ, p)< ε∧arccos(|n(p)·n(ψ, p)|)< α}

Pψ = maxcomponent(ψ, P̂ψ ) ,

where d(ψ, p) is the euclidian distance between the point
p and the shape primitive ψ , n(p) is the normal in p
and n(ψ, p) is the normal of ψ in p’s projection on ψ .
maxcomponent(ψ, P̂ψ ) extracts the group of points in P̂ψ

whose projections onto ψ belong to the largest connected
component on ψ .

4.4.1. Connected components

We find connected components in a bitmap located in the pa-
rameter domain of the shape. A pixel in the bitmap is set if
a point is projected into it. Ideally, the size β of the pixels in
the bitmap should correspond to the distance between neigh-
boring points in the data, i.e. the sampling resolution. If the
data is irregularly sampled, β should be chosen as the mini-
mal sampling resolution satisfied everywhere in the data.

The parametrization of the bitmap is straightforward for
the plane and the cylinder. In case of the sphere we use
one bitmap for every hemisphere. For the hemispheres we
use the low distortion parametrization given by [SC97]. We
choose between two different parameterizations when con-
structing a bitmap on a cone. Flat cones are parameterized by
angle and distance to the apex, yielding a circle in the plane.
For acute opening angles this produces overly large bitmaps
if the points are far from the apex, therefore we parameterize
the cone by distance to the apex and arc length in such cases,
resulting in a triangular domain in the bitmap.

4.5. Score evaluation

The second major performance factor of the RANSAC
scheme is the score function evaluation. In our case, in a
naïve implementation, the distance to all points in P would
have to be computed together with a normal at a correspond-
ing position on the shape for each candidate. Then the largest
connected component has to be found among all compatible
points.

4.5.1. Random subsets

Obviously the cost of evaluation would be prohibitive with-
out any optimizations. But since in each run we are only
interested in the candidate that achieves the highest score,
using the entire point cloud P when computing σP (ψ) is
not necessary for every shape candidate. We significantly re-
duce the number of points that have to be considered in the

evaluation of σP (ψ) by splitting the point cloud P into a set
of disjoint random subsets: P = {S1 . . .Sr}.

After a shape candidate was generated and successfully ver-
ified, the candidate is only scored against the first subset
S1 and no connected component is extracted yet. From the
score on the first subset σS1(ψ) an estimate σ̂P (ψ) for the
score σP (ψ) on all points can be extrapolated using the well
known induction from inferential statistics:

σ̂P (ψ) =−1− f (−2−|S1|,−2−|P|,−1−σS1(ψ)) , (8)

where

f (N,x,n) =
xn±

√
xn(N−x)(N−n)

N−1

N
(9)

is the mean plus/minus the standard deviation of the hyper-
geometric distribution. σ̂P (ψ) is a confidence interval [a,b]
that describes a range of likely values for the true score
σP (ψ). The expected value E(σP (ψ)) is given by a+b

2 .
With this extrapolation the potentially best candidate ψm can
be quickly identified by choosing the one with the highest
expected value. Since the uncertainty of the estimation is
captured in the confidence intervals, the truly maximal can-
didate can be found by comparing the confidence intervals
of the candidates.

If the confidence intervals of ψm and another candidate ψi
overlap, the score on an additional subset is evaluated for
both candidates and new extrapolations are computed, now
taking into account the scores on all subsets that have already
been computed:

σ̂P (ψ) =−1− f (−2−∑
i
|Si|,−2−|P|,−1−∑

i
σSi(ψ))

The more subsets have been considered, the smaller be-
comes the range of the confidence intervals, since the un-
certainty in the estimation decreases. Further subsets are in-
cluded until the confidence intervals of ψi and ψm no longer
overlap and it can be decided if either ψi or ψm is better.

To include the effect of the connectedness condition in the
extrapolation, every time an additional subset has been eval-
uated, the maximal connected component is found among all
the compatible points that have been discovered so far. The
resolution of the bitmap that is used to find the components
has to be adapted to reflect the lower sampling rate of the
subsets. If 1

x = ∑i |Si|
|P | is the fraction of points in P that have

been tested so far, then the bitmap resolution is adjusted to
xβ .

4.5.2. Octree

For each of the subsets an octree is constructed, so that dur-
ing the cost function evaluation only the points lying in cells
within ε distance to the shape have to be considered.
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Figure 3: To generate this image our algorithm was applied
to the barycenters of the triangles. The triangles were than
colored according to the shape of their barycenter and the
vertices were projected onto the shape. The jagged lines ap-
pear because the triangulation does not contain the edges of
the shapes.

Figure 4: The chart shows the times of detection of the
shapes found in the oil pump model when either subset eval-
uation or the localized sampling is disabled. For compari-
son also the timings of the fully optimized version are plot-
ted. Total runtime for the version without subsets was 272.5s,
199.1s without local sampling and 12.3s with both optimiza-
tions activated.

4.6. Refitting

When a candidate shape ψ has been selected for extraction, a
refitting step is executed before the shape is finally accepted.
As is the standard in RANSAC based algorithms, we use
a least-squares approach [Sha98]. This optimizes the geo-
metric error of the candidate shape. In refitting and extrac-
tion we include all compatible points within a distance of 3ε

from the shape, as this removes unnecessary clutter from the
point-cloud [GBS03].

5. Results

We have run extensive tests of our algorithm on different
kind of geometry. The results show that basic shapes are
reliably detected if they are present in the data. For parts
of a surface that closely resemble a basic shape, a well ap-
proximating representation is obtained. More involved areas
are partitioned into basic shapes in a reasonable manner and
the number of remaining points reflects the complexity of
the surface. The algorithm exhibits high performance as is
shown in the timings of Table 1.

To illustrate the effect of the two major optimizations em-
ployed by our algorithm, we disabled them independently
and compare the resulting timings to the optimized version
in fig. 4. The timings were obtained with the parameters
given in Table 1. The gain of the localized sampling strategy
depends on the relative sizes of the shapes with respect to the
model. The localized sampling improves the performance
especially for smaller shapes detected later on in the pro-
cess, as their relative size decreases and a global sampling
strategy requires far more candidates. Conversely, the score
evaluation on subsets has a greater impact early on in the
process when the point-cloud and the shapes are both very
large and thus many distance evaluations on octree cells and
points have to be performed. In general the gain of the score
evaluation on subsets increases with the size of the model.
This way these two optimizations complement one another
leading to significant performance gains at all stages of the
detection.

model |P | ε α τ |Ψ| |R| sec
fandisk 12k 0.01 10 50 24 38 0.57
rocker arm 40k 0.003 20 50 73 1k 6.5
carter 546k 0.001 20 200 138 47k 29.1
rolling stage 606k 0.003 20 300 61 16k 15.1
oil pump 542k 0.0015 30 100 202 15k 30.9
master cyl. 418k 0.003 35 300 37 7k 12.1
house 379k 0.002 20 100 130 19k 10.7
church 1,802k 0.002 20 1000 160 690k 40.7

4,000 81 543k 20.8choir screen 1,922k 0.002 20
500 372 236k 61.5

Table 1: Statistics on processed models. ε is given as ratio of
maximum bounding box width. Results have been averaged
over 5 runs and rounded.

The choir screen in Figure 1 consists of a number of basic
shapes, e.g. large planar areas, cylindrical or conical pillars,
and more detailed parts such as the persons. The data was
obtained with a laser range scanner and consists of several
registered scans. In addition to some noise there also are
some registration errors. The planar regions and the pillars
are well detected but even for the persons good approximat-
ing shapes are found. Note that the small casks in the hands
of the two leftmost persons are reliably detected despite their
small size relative to the whole data set. The image was gen-
erated by projecting all points on their corresponding basic
shape. For parameter values see Table 1.

In contrast, the surface of the fandisk in Figure 3 is entirely
composed of basic shapes. As expected, our algorithm is
able to find these shapes and decomposes the surface into
the constituting parts without leaving any remaining points.
Note that the result is practically identical to that obtained
by [WK05]. The oil pump on the other hand does not only
consist of the basic shapes detected by our method. How-
ever, as is shown in Figure 7, existent basic shapes are well
detected and only areas of blending patches or small scale
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details are ignored. The main characteristics of the model
are captured concisely.

In Figure 9 additional results are presented. Outliers are ig-
nored successfully and fine detail geometry is well recog-
nized.

5.1. Noise

We have performed a simple experiment to demonstrate the
ability of our method to handle noisy data. We use points
of an octant of a sphere with increasing amount of synthetic
gaussian noise and outliers as test cases. The points’ nor-
mals have been obtained by locally fitting a least-squares
plane to each sample’s neighbors, and the radius in which
the neighbors are collected is increased in accordance to the
noise ratio. Note that no shape types have been deactivated
during the detection, but we did not allow tori with a major
radius smaller than the minor one because these form a su-
perset of spheres. In Figure 5 an example with 10% noise
and 80% outliers is depicted. Outliers are generated with a
uniform distribution over the bounding box. Table 2 lists ad-
ditional results together with the respective noise ratios. As
can be seen the original sphere parameters are reliably de-
tected even for a large amount of noise as well as outliers.
For a noise degree higher than 20% the detection starts to
become unstable and the algorithm sometimes returns false
shape types. Up to 95% outliers are tolerated for a noise de-
gree of 2%.

Figure 8 b)-c) show the behavior of our algorithm on noisy
data for a more complex model. The oil-pump model was
distorted by synthetic Gaussian noise with σ equalling 1% of
the bounding box diagonal. For such heavy noise we observe
that only small or very narrow shapes (e.g. some of the screw
heads) can no longer be reliably segmented since not enough
support can be gathered for them. Another reason is that the
estimated normals become too unreliable for these shapes, as
the number of neighbor points used for the estimation needs
to be increased in order to smooth out the effect of the noise.
Therefore points belonging to adjoining shapes adversely in-
fluence the estimated normals for such small shapes. The
larger shapes, however, are unaffected and therefore are suc-
cessfully and stably detected despite the heavy noise. In Fig-
ure 8 d) in addition to the noise 10% of the points have been
randomly repositioned as outliers (again by a uniform dis-
tribution over the bounding box). As expected, the detection
successfully ignores these outliers and the result is equiva-
lent to that without outliers.

A real world example of heavy noise is demonstrated in Fig-
ure 6. Our method is able to successfully detect the planes
comprising the roofs of the two spires despite the numerous
outliers and noise artifacts.

(a) Points (b) Sphere (c) Associated points

Figure 5: Points on an octant of a sphere distorted by syn-
thetic gaussian noise with a σ of 10% relative to the sphere
diameter and 80% outliers. Our algorithm is able to robustly
detect the sphere, see also Table 2.

(a) Original (b) Random colors (c) Colored by type

Figure 6: a) A part of the church model containing heavy
noise. b) Points belonging to shapes in random colors c)
Points colored by type of shape as in Fig. 7.

5.2. Comparison

Comparing our algorithm to other existing methods op-
erating on 3D point-clouds is difficult. Most point-cloud
segmentation algorithms do not explicitly detect instances
of primitive shapes but find areas that are consistent in
some other, predefined way. Moreover there are hardly
any publicly available implementations or results. How-
ever, a benchmark for range image segmentation does ex-
ist (http://marathon.csee.usf.edu/seg-comp/SegComp.html)
[PBJB98]. Therefore we resort to this benchmark to pro-
vide some comparisons of our method with other existing
algorithms. Please note though, that the original intent of
our method is not range image segmentation and the bench-
mark can therefore reflect only a subset of our method’s abil-
ities. The benchmark provides test images in conjunction
with manually obtained ground truth segmentations as well
as a tool for automatic evaluation. Due to the low quality of
the used scanner the test images contain heavy systematic
noise. Range image segmentation, of course, is a very spe-
cial and simpler case of our far more general problem for-
mulation that would allow for many extra optimizations and
assumptions in the algorithm. Nonetheless we have tested
our method as is on the test images provided by the bench-
mark. Table 3 lists our detection results as well as those
of the other two state-of-the-art methods for which results
are available. Our method is able to achieve similar or even
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before refitting after refitting
σ o µr µc σr σc µr µc σr σc

0 0 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00
1 25 1.73 2.24 1.16 0.95 0.07 0.07 0.004 0.004
2 25 1.79 2.60 1.43 1.47 0.31 0.31 0.021 0.023
5 50 2.25 3.96 1.65 2.19 0.35 0.26 0.054 0.025

10 50 8.11 11.87 4.15 4.44 4.32 7.20 0.53 0.91
10 80 7.17 10.58 5.18 4.68 5.12 5.99 1.65 1.96

Table 2: Parameter errors for the fitted spheres under dif-
ferent noise conditions compared to ground truth. All values
are given in percent of the sphere diameter. The values are,
from left to right, the level of gaussian noise σ , the percent-
age of outliers o, the mean values µr for radius and µc for
center deviation, and the standard deviations σr of the ra-
dius and σc of the center.

Threshold [BJ88] [JB97] our
0.7 16.65% 66.93% 71.06%
0.8 16.12% 66.50% 68.04%
0.9 16.14% 62.42% 62.35%

Table 3: Average percentage of correctly detected regions
on the 40 test range images of the Segmentation Comparison
Project. The threshold controls the ratio of required overlap
between ground truth and machine segmented regions.

slightly higher rates of correctly detected regions as the UB
segmenter [JB97], while clearly outperforming the BJ seg-
menter [BJ88]. The results are encouraging in the sense that
our method can easily compete with these native range im-
age segmenters without any further adaptations to this spe-
cial case.

6. Conclusion

After having outlined the potential in the well known
RANSAC paradigm we have developed several fundamen-
tal extensions and derived new assessments for the proba-
bilities involved therein. We were able to present a random-
ized shape detection algorithm that is not dominated by the
imponderability of chance, but is extremely robust and fast,
and can be applied to a large variety of data from different
sources and of different quality. Although our algorithm, in
contrast to previous methods in computer graphics, does not
find shape proxies for every part of the surface, we stress that
this is not a requirement in many applications. The speed of
the method, the quality of the results and its few require-
ments on the data render our algorithm a practical choice for
shape detection in many areas.

Besides obvious extensions, such as the recognition of ad-
ditional shapes and the inclusion of a more sophisticated
model selection stage (possibly based on the MDL princi-
ple), in future work we plan to further explore the potential
of the hybrid shape representations obtained with the algo-

rithm. Currently we are investigating the use of the shape
information for compression as well as registration and al-
ready have achieved very promising results. Further direc-
tions of future research include surface repairing, surface re-
construction and object recognition. Also the benefit of such
higher level information in interactive applications such as
modeling, segmentation and classification can be studied.

Acknowledgements

The oil pump, rolling stage, master cylinder and carter
scanned models are provided courtesy of INRIA and
ISTI by the AIM@SHAPE Shape Repository. The rocker
arm model appears by courtesy of Cyberware, Inc
(www.cyberware.com). This work was partially funded by
the German Science Foundation (DFG) as part of the bundle
project “Abstraktion von Geoinformation bei der multiskali-
gen Erfassung, Verwaltung, Analyse und Visualisierung”.

References

[BF81] BOLLES R. C., FISCHLER M. A.: A ransac-based
approach to model fitting and its application to finding
cylinders in range data. In Proceedings of the 7th Interna-
tional Joint Conference on Artificial Intelligence (1981),
pp. 637–643.

[BGV∗02] BENKO P., GÉZA K., VÁRADY T., ANDOR

L., MARTIN R.: Constrained fitting in reverse engineer-
ing. Comput. Aided Geom. Des. 19, 3 (2002), 173–205.

[BJ88] BESL P. J., JAIN R. C.: Segmentation through
variable-order surface fitting. IEEE Trans. Pattern Anal.
Mach. Intell. 10, 2 (1988), 167–192.

[BMV01] BENKO P., MARTIN R. R., VÁRADY T.: Al-
gorithms for reverse engineering boundary representation
models. Computer-Aided Design 33, 11 (2001), 839–851.

[CG01] CHAPERON T., GOULETTE F.: Extracting cylin-
ders in full 3-d data using a random sampling method and
the gaussian image. In VMV01 (2001), pp. 35–42.

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN

M.: Variational shape approximation. ACM Trans. Graph.
23, 3 (2004), 905–914.

[DDSD03] DÉCORET X., DURAND F., SILLION F.,
DORSEY J.: Billboard clouds for extreme model simplifi-
cation. In Proceedings of the ACM Siggraph (2003), ACM
Press.

[FB81] FISCHLER M. A., BOLLES R. C.: Random sam-
ple consensus: a paradigm for model fitting with applica-
tions to image analysis and automated cartography. Com-
mun. ACM 24, 6 (1981), 381–395.

[FEF97] FITZGIBBON A. W., EGGERT D. W., FISHER

R. B.: High-level CAD model acquisition from range im-
ages. Computer-aided Design 29, 4 (1997), 321–330.

c© The Eurographics Association and Blackwell Publishing 2007.



Ruwen Schnabel & Roland Wahl & Reinhard Klein / Efficient RANSAC for Point-Cloud Shape Detection

(a) Original (b) Random colors (c) Colored by type (d) Bitmaps
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(a) Noisy original (b) Random colors (c) Colored by type (d) Random colors

Figure 8: a) Distorted model with Gaussian noise and outliers b)-c) Results of the detection on the model with Gaussian noise
but without added outliers. d) In addition to the Gaussian noise, 10% outliers were added (see a)).

Figure 9: First column: Original point-clouds. Second column: Shapes colored randomly. Last column: Shapes colored by
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carter. For parameters and timings see table 1.

c© The Eurographics Association and Blackwell Publishing 2007.



Ruwen Schnabel & Roland Wahl & Reinhard Klein / Efficient RANSAC for Point-Cloud Shape Detection

[GBS03] GOTARDO P. F. U., BELLON O. R. P., SILVA

L.: Range image segmentation by surface extraction using
an improved robust estimator. cvpr 02 (2003), 33.

[GG04] GELFAND N., GUIBAS L. J.: Shape segmentation
using local slippage analysis. In SGP ’04: Proceedings of
the 2004 Eurographics/ACM SIGGRAPH symposium on
Geometry processing (New York, NY, USA, 2004), ACM
Press, pp. 214–223.

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MC-
DONALD J., STUETZLE W.: Surface reconstruction from
unorganized points. In SIGGRAPH ’92: Proceedings of
the 19th annual conference on Computer graphics and in-
teractive techniques (New York, NY, USA, 1992), ACM
Press, pp. 71–78.

[HOP∗05] HOFER M., ODEHNAL B., POTTMANN H.,
STEINER T., WALLNER J.: 3d shape recognition and
reconstruction based on line element geometry. In
Tenth IEEE International Conference on Computer Vision
(2005), vol. 2, IEEE Computer Society, pp. 1532–1538.

[Hou62] HOUGH P.: Method and means for recognizing
complex patterns. In US Patent (1962).

[IK87] ILLINGWORTH J., KITTLER J.: The adaptive
hough transform. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence 9, 5 (September 1987), 690–
698.

[IK88] ILLINGWORTH J., KITTLER J.: A survey of the
hough transform. Comput. Vision Graph. Image Process.
44, 1 (1988), 87–116.

[JB97] JIANG X., BUNKE H.: Range image segmentation:
Adaptive grouping of edges into regions. In ACCV ’98:
Proceedings of the Third Asian Conference on Computer
Vision-Volume II (London, UK, 1997), Springer-Verlag,
pp. 299–306.

[LGB95] LEONARDIS A., GUPTA A., BAJCSY R.: Seg-
mentation of range images as the search for geometric
parametric models. Int. J. Comput. Vision 14, 3 (1995),
253–277.

[LJS97] LEONARDIS A., JAKLIČ A., SOLINA F.: Su-
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